リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elucidation of the Mechanism of Action of New Drug Candidates on Target Proteins」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elucidation of the Mechanism of Action of New Drug Candidates on Target Proteins

中島, 康祐 筑波大学 DOI:10.15068/0002005698

2022.11.25

概要

Drug discovery, beneficial in basic science research, involves drug optimization to identify compounds with excellent profiles and to elucidate mechanisms of action on their target proteins by suitable pharmacological studies. Proteins undergo conformational changes under various biological conditions, and the effect of the compound on target proteins having different conformations varies. Additionally, conformational changes involved in protein function are often closely related to various diseases. Here, the compounds acting on the same target protein may have different therapeutic effects based on changes in their targeted protein conformations. Therefore, to obtain valuable drug candidates, a number of factors other than biological assay is necessary such as, identification of multiple compounds with various mechanisms of action against their target proteins, detailed analysis of their mechanism of action, and determining the mechanism optimal for the desired drug. Here, I have identified several compounds with novel mechanisms of action in two drug discovery programs. In addition, I elucidated the mechanism of action via suitable pharmacological studies for each target and presented data that form the basis for understanding the diseases and their underlying phenomena of life.

Chapter I describes a novel mode of inhibition of phosphodiesterase type (PDE) 2A inhibitors. PDE2A is an enzyme that hydrolyzes cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) and has attracted attention as a drug target molecule in central nervous system diseases that affect memory, learning, and cognition. PDE2A has a GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain that binds to cGMP, which then increases the hydrolytic activity of the substrates, cGMP and cAMP. Thus, positive feedback of the catalytic activity to hydrolyze cyclic nucleotides, cAMP and cGMP, occurs in the presence of appropriate concentrations of cGMP, resulting in a “brake” that attenuates downstream cyclic nucleotide signaling. I found that some previously reported PDE2A inhibitors had reduced inhibitory activity in the presence of cGMP at concentrations (70 nM) lower than those effective for positive feedback (4 μM). This impairment depended on the presence of the GAF domains but was not attributed to the binding of the inhibitors to these domains. Notably, I identified novel PDE2A inhibitors that did not exhibit this behavior; i.e., the inhibitory effects of these compounds were as strong at a lower concentration of cGMP (70 nM) as at a higher concentration (4 μM). cGMP levels in the cerebrospinal fluid are lower in patients with schizophrenia and Alzheimer's disease than in healthy subjects, which may partly explain the symptoms. This suggests that PDE2A inhibitors with the above novel mode of inhibition may be more effective than other PDE2A inhibitors in normalizing low cGMP levels in these diseases.

Chapter II describes the discovery of novel hyperpolarization-activated cyclic nucleotide-gated (HCN) 4 channel blockers with blocking kinetics and binding properties that have not been previously reported. The HCN4 channel regulates the heart rate by generating a pacemaker current called “If” in the sinoatrial node (SAN) near the right atrium. HCN4 blockers such as ivabradine and ZD7288 are widely used to study various cardiac diseases. These blockers have a variety of channel-state dependencies and binding sites, suggesting that other unique molecules may be identified, which will further help in understanding HCN properties and drug discovery for HCN4 blockers. Therefore, I performed a random screening of 16,000 small molecule compounds using an automated patch clamp system and identified novel HCN4 blockers. The blocking kinetics and binding properties of these molecules were determined by electrophysiological studies and site-directed mutagenesis, respectively, which indicated various blocking profiles. These blocking profiles were different from those of ivabradine and ZD7288. Notably, mutagenesis analysis demonstrated that blockers that were more potent when the channel was open were associated with the C478 residue, located in the pore cavity region near the cellular surface of the plasma membrane. In addition, blockers that were less potent when the channel was open were associated with residues Y506 and I510, located in the intracellular region of the pore gate. Thus, identification of novel HCN4 blockers for the first time through random screening was carried out, and further profiling analysis of these blockers provided the unique molecular insights in the drug-binding modes of HCN4.

In summary, these studies identified several novel therapeutic candidate compounds, PDE2A inhibitors and HCN4 blockers, which were different from known compounds by their mechanisms of action on their target proteins and proposed new insights into the biological regulatory mechanisms involved in the pathology. Pharmacological studies to elucidate these novel compounds and mechanisms of action are expected to lead not only to the development of drugs in their respective therapeutic areas but also to the functional analysis of target proteins and further understanding of disease mechanisms.

この論文で使われている画像

参考文献

Abarghaz, M., Biondi, S., DURANTON, J., Limanton, E., Mondadori, C., & Wagner, P. (2005). Benzo[1,4]diazepin-2-one derivatives as phosphodiesterase PDE2 inhibitors,

preparation and therapeutic use thereof.

Aczél, S., Kurka, B., & Hering, S. (1998). Mechanism of voltage- and use-dependent block of class A Ca2+ channels by mibefradil. Br J Pharmacol, 125(3), 447-454.

doi:10.1038/sj.bjp.0702092

Andrikopoulos, G., Dasopoulou, C., Sakellariou, D., Tzeis, S., Koulouris, S., Kranidis, A., . . . Manolis, A. S. (2006). Ivabradine: a selective If current inhibitor in the treatment of stable angina. Recent Pat Cardiovasc Drug Discov, 1(3), 277-282. doi:10.2174/157489006778777052

Arrowsmith, J. (2011a). Trial watch: Phase II failures: 2008-2010. Nat Rev Drug Discov, 10(5), 328-329. doi:10.1038/nrd3439

Arrowsmith, J. (2011b). Trial watch: phase III and submission failures: 2007-2010. Nat Rev Drug Discov, 10(2), 87. doi:10.1038/nrd3375

Arrowsmith, J., & Miller, P. (2013). Trial watch: phase II and phase III attrition rates 2011- 2012. Nat Rev Drug Discov, 12(8), 569. doi:10.1038/nrd4090

Beavo, J. A. (1995). Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev, 75(4), 725-748. doi:10.1152/physrev.1995.75.4.725

Bell, D. C., & Dallas, M. L. (2018). Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br Pharmacol, 175(12), 2312-2321. doi:10.1111/bph.13916

Benarroch, E. E. (2013). HCN channels: function and clinical implications. Neurology, 80(3), 304-310. doi:10.1212/WNL.0b013e31827dec42

Bender, A. T., & Beavo, J. A. (2006). Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev, 58(3), 488-520. doi:10.1124/pr.58.3.5

Biel, M., Ludwig, A., Zong, X., & Hofmann, F. (1999). Hyperpolarization-activated cation channels: a multi-gene family. Rev Physiol Biochem Pharmacol, 136, 165-181. doi:10.1007/BFb0032324

BoSmith, R. E., Briggs, I., & Sturgess, N. C. (1993). Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells. Br J Pharmacol, 110(1), 343-349. doi:10.1111/j.1476- 5381.1993.tb13815.x

Bucchi, A., Baruscotti, M., & DiFrancesco, D. (2002). Current-dependent block of rabbit sinoatrial node I(f) channels by ivabradine. J Gen Physiol, 120(1), 1-13.

Bucchi, A., Baruscotti, M., Nardini, M., Barbuti, A., Micheloni, S., Bolognesi, M., & DiFrancesco, D. (2013). Identification of the molecular site of ivabradine binding to HCN4 channels. PLoS One, 8(1), e53132. doi:10.1371/journal.pone.0053132

Bucchi, A., Tognati, A., Milanesi, R., Baruscotti, M., & DiFrancesco, D. (2006). Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol, 572(Pt2), 335-346. doi:10.1113/jphysiol.2005.100776

Cao, Y., Chen, S., Liang, Y., Wu, T., Pang, J., Liu, S., & Zhou, P. (2018). Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by beta-blocker carvedilol. Br J Pharmacol, 175(20), 3963-3975. doi:10.1111/bph.14469

Cao, Y., Pang, J., & Zhou, P. (2016). HCN Channel as Therapeutic Targets for Heart Failure and Pain. Curr Top Med Chem, 16(16), 1855-1861. doi:10.2174/1568026616666151215104058

Cargnoni, A., Ceconi, C., Stavroula, G., & Ferrari, R. (2006). Heart rate reduction by pharmacological If current inhibition. Adv Cardiol, 43, 31-44. doi:10.1159/000095404

Chan, Y. C., Wang, K., Au, K. W., Lau, C. P., Tse, H. F., & Li, R. A. (2009). Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels. Pflugers Arch, 459(1), 25-38. doi:10.1007/s00424-009-0719-2

Cheng, L., Kinard, K., Rajamani, R., & Sanguinetti, M. C. (2007). Molecular mapping of the binding site for a blocker of hyperpolarization-activated, cyclic nucleotide-modulated pacemaker channels. J Pharmacol Exp Ther, 322(3), 931-939. doi:10.1124/jpet.107.121467

Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. Br J Pharmacol, 153 Suppl 1(Suppl 1), S339-346. doi:10.1038/sj.bjp.0707606

Conti, M., & Jin, S. L. (1999). The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol, 63, 1-38. doi:10.1016/s0079-6603(08)60718-7

Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., & Pangalos, M. N. (2014). Lessons learned from the fate of AstraZeneca's drug pipeline: a fivedimensional framework. Nat Rev Drug Discov, 13(6), 419-431. doi:10.1038/nrd4309

Costales, M. G., Childs-Disney, J. L., Haniff, H. S., & Disney, M. D. (2020). How We Think about Targeting RNA with Small Molecules. J Med Chem, 63(17), 8880-8900. doi:10.1021/acs.jmedchem.9b01927

De, L. P., Egbertson, M., Hills, I. D., Johnson, A. W., & Machacek, M. (2011). Inhibiteurs de quinoléinone pde2.

DiFrancesco, D. (1986). Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature, 324(6096), 470-473. doi:10.1038/324470a0

DiFrancesco, D. (2010). The role of the funny current in pacemaker activity. Circ Res, 106(3), 434-446. doi:10.1161/circresaha.109.208041

Falese, J. P., Donlic, A., & Hargrove, A. E. (2021). Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev, 50(4), 2224-2243. doi:10.1039/d0cs01261k

Farre, C., Stoelzle, S., Haarmann, C., George, M., Bruggemann, A., & Fertig, N. (2007). Automated ion channel screening: patch clamping made easy. Expert Opin Ther Targets, 11(4), 557-565. doi:10.1517/14728222.11.4.557

Fedorova, O., Jagdmann, G. E., Jr., Adams, R. L., Yuan, L., Van Zandt, M. C., & Pyle, A. M. (2018). Small molecules that target group II introns are potent antifungal agents. Nat Chem Biol, 14(12), 1073-1078. doi:10.1038/s41589-018-0142-0

Finkel, A., Wittel, A., Yang, N., Handran, S., Hughes, J., & Costantin, J. (2006). Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen, 11(5), 488-496. doi:10.1177/1087057106288050

Fox, K., Ford, I., Steg, P. G., Tendera, M., & Ferrari, R. (2008). Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet, 372(9641), 807-816. doi:10.1016/s0140-6736(08)61170-8

Francis, S. H., Blount, M. A., & Corbin, J. D. (2011). Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev, 91(2), 651-690. doi:10.1152/physrev.00030.2010

Francis, S. H., Turko, I. V., & Corbin, J. D. (2001). Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol, 65, 1-52. doi:10.1016/s0079-6603(00)65001-8

Gattaz, W. F., Cramer, H., & Beckmann, H. (1983). Low CSF concentrations of cyclic GMP in schizophrenia. Br J Psychiatry, 142, 288-291.

Goehring, A., Lee, C. H., Wang, K. H., Michel, J. C., Claxton, D. P., Baconguis, I., . . . Gouaux, E. (2014). Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc, 9(11), 2574-2585. doi:10.1038/nprot.2014.173

Gomez, L., & Breitenbucher, J. G. (2013). PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg Med Chem Lett, 23(24), 6522-6527. doi:10.1016/j.bmcl.2013.10.014

Guo, W., Yao, S., Sun, P., Yang, T. B., Tang, C. P., Zheng, M. Y., . . . Meng, L. H. (2020). Discovery and characterization of natural products as novel indoleamine 2,3- dioxygenase 1 inhibitors through high-throughput screening. Acta Pharmacol Sin, 41(3), 423-431. doi:10.1038/s41401-019-0246-4

Harmer, A. R., Abi-Gerges, N., Easter, A., Woods, A., Lawrence, C. L., Small, B. G., . . . Pollard, C. E. (2008). Optimisation and validation of a medium-throughput electrophysiologybased hNav1.5 assay using IonWorks. J Pharmacol Toxicol Methods, 57(1), 30-41. doi:10.1016/j.vascn.2007.09.002

Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nat Biotechnol, 32(1), 40-51. doi:10.1038/nbt.2786

He, J. T., Li, X. Y., Zhao, X., & Liu, X. (2019). Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain. Rev Neurosci, 30(6), 639-649. doi:10.1515/revneuro-2018-0094

Hering, S., Aczél, S., Kraus, R. L., Berjukow, S., Striessnig, J., & Timin, E. N. (1997). Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation. Proc Natl Acad Sci U S A, 94(24), 13323- 13328. doi:10.1073/pnas.94.24.13323

Howe, J. A., Wang, H., Fischmann, T. O., Balibar, C. J., Xiao, L., Galgoci, A. M., . . . Roemer, T. (2015). Selective small-molecule inhibition of an RNA structural element. Nature, 526(7575), 672-677. doi:10.1038/nature15542

Hwang, T. J., Carpenter, D., Lauffenburger, J. C., Wang, B., Franklin, J. M., & Kesselheim, A. S. (2016). Failure of Investigational Drugs in Late-Stage Clinical Development and Publication of Trial Results. JAMA Intern Med, 176(12), 1826-1833. doi:10.1001/jamainternmed.2016.6008

Jacoby, E., Bouhelal, R., Gerspacher, M., & Seuwen, K. (2006). The 7 TM G-protein-coupled receptor target family. ChemMedChem, 1(8), 761-782. doi:10.1002/cmdc.200600134

Jager, R., Russwurm, C., Schwede, F., Genieser, H. G., Koesling, D., & Russwurm, M. (2012). Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem, 287(2), 1210-1219. doi:10.1074/jbc.M111.263806

Jager, R., Schwede, F., Genieser, H. G., Koesling, D., & Russwurm, M. (2010). Activation of PDE2 and PDE5 by specific GAF ligands: delayed activation of PDE5. Br J Pharmacol, 161(7), 1645-1660. doi:10.1111/j.1476-5381.2010.00977.x

Kaczor, A. A., Karczmarzyk, Z., Fruziński, A., Pihlaja, K., Sinkkonen, J., Wiinämaki, K., . . . Matosiuk, D. (2014). Structural studies, homology modeling and molecular docking of novel non-competitive antagonists of GluK1/GluK2 receptors. Bioorg Med Chem, 22(2), 787-795. doi:10.1016/j.bmc.2013.12.013

Kaupp, U. B., & Seifert, R. (2001). Molecular diversity of pacemaker ion channels. Annu Rev Physiol, 63, 235-257. doi:10.1146/annurev.physiol.63.1.235

Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov, 3(8), 711-715. doi:10.1038/nrd1470

Lee, C. H., & MacKinnon, R. (2017). Structures of the Human HCN1 HyperpolarizationActivated Channel. Cell, 168(1-2), 111-120 e111. doi:10.1016/j.cell.2016.12.023

Lloyd, M. D. (2020). High-Throughput Screening for the Discovery of Enzyme Inhibitors. J Med Chem, 63(19), 10742-10772. doi:10.1021/acs.jmedchem.0c00523

Ludwig, A., Budde, T., Stieber, J., Moosmang, S., Wahl, C., Holthoff, K., . . . Hofmann, F. (2003). Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. Embo j, 22(2), 216-224. doi:10.1093/emboj/cdg032

Ludwig, A., Zong, X., Stieber, J., Hullin, R., Hofmann, F., & Biel, M. (1999). Two pacemaker channels from human heart with profoundly different activation kinetics. Embo j, 18(9), 2323-2329. doi:10.1093/emboj/18.9.2323

Martinez, S. E., Wu, A. Y., Glavas, N. A., Tang, X. B., Turley, S., Hol, W. G., & Beavo, J. A. (2002). The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A, 99(20), 13260-13265. doi:10.1073/pnas.192374899

Martins, T. J., Mumby, M. C., & Beavo, J. A. (1982). Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem, 257(4), 1973-1979.

Matthiesen, K., & Nielsen, J. (2009). Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity. Biochem J, 423(3), 401-409. doi:10.1042/bj20090982

McManus, O. B. (2014). HTS assays for developing the molecular pharmacology of ion channels. Curr Opin Pharmacol, 15, 91-96. doi:10.1016/j.coph.2014.01.004

Mencacci, N. E., Kamsteeg, E. J., Nakashima, K., R'Bibo, L., Lynch, D. S., Balint, B., . . . Bhatia, K. P. (2016). De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. Am J Hum Genet, 98(4), 763-771. doi:10.1016/j.ajhg.2016.02.015

Meng, Q. T., Xia, Z. Y., Liu, J., Bayliss, D. A., & Chen, X. (2011). Local anesthetic inhibits hyperpolarization-activated cationic currents. Mol Pharmacol, 79(5), 866-873. doi:10.1124/mol.110.070227

Michels, G., Er, F., Khan, I., Sudkamp, M., Herzig, S., & Hoppe, U. C. (2005). Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias. Circulation, 111(4), 399-404. doi:10.1161/01.cir.0000153799.65783.3a

Milligan, C. J., & Moller, C. (2013). Automated planar patch-clamp. Methods Mol Biol, 998, 171-187. doi:10.1007/978-1-62703-351-0_13

Miyamoto, K., Kurita, M., Sakai, R., Sanae, F., Wakusawa, S., & Takagi, K. (1994). Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines. Biochem Pharmacol, 48(6), 1219-1223.

Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov, 8(12), 959-968. doi:10.1038/nrd2961

Naci, H., & Ioannidis, J. P. (2015). How good is "evidence" from clinical studies of drug effects and why might such evidence fail in the prediction of the clinical utility of drugs? Annu Rev Pharmacol Toxicol, 55, 169-189. doi:10.1146/annurev-pharmtox-010814- 124614

Nikookar, H., Mohammadi-Khanaposhtani, M., Imanparast, S., Faramarzi, M. A., Ranjbar, P. R., Mahdavi, M., & Larijani, B. (2018). Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential antidiabetic agents. Bioorg Chem, 77, 280-286. doi:10.1016/j.bioorg.2018.01.025

Obergrussberger, A., Brüggemann, A., Goetze, T. A., Rapedius, M., Haarmann, C., Rinke, I., . . . Fertig, N. (2016). Automated Patch Clamp Meets High-Throughput Screening: 384 Cells Recorded in Parallel on a Planar Patch Clamp Module. J Lab Autom, 21(6), 779-793. doi:10.1177/2211068215623209

Obergrussberger, A., Friis, S., Brüggemann, A., & Fertig, N. (2021). Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Expert

Opin Drug Discov, 16(1), 1-5. doi:10.1080/17460441.2020.1791079

Obergrussberger, A., Goetze, T. A., Brinkwirth, N., Becker, N., Friis, S., Rapedius, M., . . . Fertig, N. (2018). An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: implications for drug discovery. Expert

Opin Drug Discov, 13(3), 269-277. doi:10.1080/17460441.2018.1428555

Omori, K., & Kotera, J. (2007). Overview of PDEs and their regulation. Circ Res, 100(3), 309- 327. doi:10.1161/01.RES.0000256354.95791.f1

Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov, 10(6), 428-438. doi:10.1038/nrd3405

Pandit, J., Forman, M. D., Fennell, K. F., Dillman, K. S., & Menniti, F. S. (2009a). Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct Proc Natl Acad Sci U S A (Vol. 106, pp. 18225-18230).

Pandit, J., Forman, M. D., Fennell, K. F., Dillman, K. S., & Menniti, F. S. (2009b). Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A, 106(43), 18225- 18230. doi:10.1073/pnas.0907635106

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 9(3), 203-214. doi:10.1038/nrd3078

Perry, M., Stansfeld, P. J., Leaney, J., Wood, C., de Groot, M. J., Leishman, D., . . . Mitcheson, J. S. (2006). Drug binding interactions in the inner cavity of HERG channels: molecular insights from structure-activity relationships of clofilium and ibutilide analogs. Mol Pharmacol, 69(2), 509-519. doi:10.1124/mol.105.016741

Pina, A. S., Hussain, A., & Roque, A. C. (2009). An historical overview of drug discovery. Methods Mol Biol, 572, 3-12. doi:10.1007/978-1-60761-244-5_1

Priest, B. T., Cerne, R., Krambis, M. J., Schmalhofer, W. A., Wakulchik, M., Wilenkin, B., & Burris, K. D. (2004). Automated Electrophysiology Assays. In G. S. Sittampalam, A. Grossman, K. Brimacombe, M. Arkin, D. Auld, C. P. Austin, J. Baell, B. Bejcek, J. M. M. Caaveiro, T. D. Y. Chung, N. P. Coussens, J. L. Dahlin, V. Devanaryan, T. L. Foley, M. Glicksman, M. D. Hall, J. V. Haas, S. R. J. Hoare, J. Inglese, P. W. Iversen, S. D. Kahl, S. C. Kales, S. Kirshner, M. Lal-Nag, Z. Li, J. McGee, O. McManus, T. Riss, P.Saradjian, O. J. Trask, Jr., J. R. Weidner, M. J. Wildey, M. Xia, & X. Xu (Eds.), Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.

Qu, J., Altomare, C., Bucchi, A., DiFrancesco, D., & Robinson, R. B. (2002). Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells. Pflugers Arch, 444(5), 597-601. doi:10.1007/s00424-002-0860-7

Raghunathan, S., Islas, J. F., Mistretta, B., Iyer, D., Shi, L., Gunaratne, P. H., . . . McConnell, B. K. (2019). Conversion of human cardiac progenitor cells into cardiac pacemakerlike cells. J Mol Cell Cardiol, 138, 12-22. doi:10.1016/j.yjmcc.2019.09.015

Ramírez-Nava, E. J., Hernández-Ochoa, B., Navarrete-Vázquez, G., Arreguín-Espinosa, R., Ortega-Cuellar, D., González-Valdez, A., . . . Gómez-Manzo, S. (2021). Novel inhibitors of human glucose-6-phosphate dehydrogenase (HsG6PD) affect the activity and stability of the protein. Biochim Biophys Acta Gen Subj, 1865(3), 129828. doi:10.1016/j.bbagen.2020.129828

Ramos, E., & O'Leary M, E. (2004). State-dependent trapping of flecainide in the cardiac sodium channel. J Physiol, 560(Pt 1), 37-49. doi:10.1113/jphysiol.2004.065003

Rizvi, N. F., Santa Maria, J. P., Jr., Nahvi, A., Klappenbach, J., Klein, D. J., Curran, P. J., . . . Nickbarg, E. B. (2020). Targeting RNA with Small Molecules: Identification of

Selective, RNA-Binding Small Molecules Occupying Drug-Like Chemical Space.

SLAS Discov, 25(4), 384-396. doi:10.1177/2472555219885373 Robinson, R. B., & Siegelbaum, S. A. (2003). Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol, 65, 453-480. doi:10.1146/annurev.physiol.65.092101.142734

Rosman, G. J., Martins, T. J., Sonnenburg, W. K., Beavo, J. A., Ferguson, K., & Loughney, K. (1997). Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase. Gene, 191(1), 89-95.

Russwurm, C., Zoidl, G., Koesling, D., & Russwurm, M. (2009). Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes J Biol Chem (Vol. 284, pp. 25782- 25790).

Rybalkin, S. D., Rybalkina, I. G., Shimizu-Albergine, M., Tang, X. B., & Beavo, J. A. (2003). PDE5 is converted to an activated state upon cGMP binding to the GAF A domain Embo J (Vol. 22, pp. 469-478).

Rybalkina, I. G., Tang, X. B., & Rybalkin, S. D. (2010). Multiple affinity states of cGMPspecific phosphodiesterase for sildenafil inhibition defined by cGMP-dependent and cGMP-independent mechanisms. Mol Pharmacol, 77(4), 670-677. doi:10.1124/mol.109.062299

Rzuczek, S. G., Southern, M. R., & Disney, M. D. (2015). Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy. ACS Chem Biol, 10(12), 2706-2715. doi:10.1021/acschembio.5b00430

Sanguinetti, M. C., & Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature, 440(7083), 463-469. doi:10.1038/nature04710

Santoro, B., & Shah, M. M. (2020). Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol, 60, 109-131. doi:10.1146/annurev-pharmtox-010919-023356

Santoro, B., & Tibbs, G. R. (1999). The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci, 868, 741-764. doi:10.1111/j.1749-6632.1999.tb11353.x

Sartiani, L., Mannaioni, G., Masi, A., Novella Romanelli, M., & Cerbai, E. (2017). The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev, 69(4), 354-395. doi:10.1124/pr.117.014035

Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov, 11(3), 191-200. doi:10.1038/nrd3681

Schauss, D., Hendrix, M., König, G., BÖSS, F. G., Van, D. S. F. J., Schreiber, R., . . . Niewöhner, U. (2002). Nouvelles imidazotriazinones substituees en tant qu'inhibiteurs de pde ii.

Schroeder, K., Neagle, B., Trezise, D. J., & Worley, J. (2003). Ionworks HT: a new highthroughput electrophysiology measurement platform. J Biomol Screen, 8(1), 50-64. doi:10.1177/1087057102239667

Shin, K. S., Rothberg, B. S., & Yellen, G. (2001). Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J Gen Physiol, 117(2), 91-101.

Stange, H., Langen, B., Egerland, U., Hoefgen, N., Priebs, M., Malamas, M. S., . . . Ni, Y. (2010). Triazine derivatives as inhibitors of phosphodiesterases.

Stangherlin, A., Gesellchen, F., Zoccarato, A., Terrin, A., Fields, L. A., Berrera, M., . . . Zaccolo, M. (2011). cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res, 108(8), 929-939. doi:10.1161/circresaha.110.230698

Stansfeld, P. J., Gedeck, P., Gosling, M., Cox, B., Mitcheson, J. S., & Sutcliffe, M. J. (2007). Drug block of the hERG potassium channel: insight from modeling. Proteins, 68(2), 568-580. doi:10.1002/prot.21400

Stelzer, A. C., Frank, A. T., Kratz, J. D., Swanson, M. D., Gonzalez-Hernandez, M. J., Lee, J., . . . Al-Hashimi, H. M. (2011). Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol, 7(8), 553-559. doi:10.1038/nchembio.596

Stephenson, D. T., Coskran, T. M., Wilhelms, M. B., Adamowicz, W. O., O'Donnell, M. M., Muravnick, K. B., . . . Morton, D. (2009). Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J Histochem Cytochem, 57(10), 933-949. doi:10.1369/jhc.2009.953471

Swedberg, K., Komajda, M., Bohm, M., Borer, J. S., Ford, I., Dubost-Brama, A., . . . Tavazzi, L. (2010). Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 376(9744), 875-885. doi:10.1016/s0140- 6736(10)61198-1

Tamura, A., Ogura, T., Uemura, H., Reien, Y., Kishimoto, T., Nagai, T., . . . Nakaya, H. (2009). Effects of antiarrhythmic drugs on the hyperpolarization-activated cyclic nucleotidegated channel current. J Pharmacol Sci, 110(2), 150-159. doi:10.1254/jphs.08312fp

Tanguay, J., Callahan, K. M., & D'Avanzo, N. (2019). Characterization of drug binding within the HCN1 channel pore. Sci Rep, 9(1), 465. doi:10.1038/s41598-018-37116-2

Thollon, C., Bedut, S., Villeneuve, N., Coge, F., Piffard, L., Guillaumin, J. P., . . . Vilaine, J. P. (2007). Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol, 150(1), 37-46. doi:10.1038/sj.bjp.0706940

Trivedi, S., Dekermendjian, K., Julien, R., Huang, J., Lund, P. E., Krupp, J., . . . Bostwick, R. (2008). Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators. Assay Drug Dev Technol, 6(2), 167-179. doi:10.1089/adt.2007.090

Ugarte, A., Gil-Bea, F., Garcia-Barroso, C., Cedazo-Minguez, A., Ramirez, M. J., Franco, R., . . . Cuadrado-Tejedor, M. (2015). Decreased levels of guanosine 3', 5'-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease. Neuropathol Appl Neurobiol, 41(4), 471- 482. doi:10.1111/nan.12203

Umuhire Juru, A., & Hargrove, A. E. (2021). Frameworks for targeting RNA with small molecules. J Biol Chem, 296, 100191. doi:10.1074/jbc.REV120.015203

Umuhire Juru, A., Patwardhan, N. N., & Hargrove, A. E. (2019). Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNASmall Molecule Interactions. ACS Chem Biol, 14(5), 824-838. doi:10.1021/acschembio.8b00945

Vandenberg, J. I., Perry, M. D., Perrin, M. J., Mann, S. A., Ke, Y., & Hill, A. P. (2012). hERG K(+) channels: structure, function, and clinical significance. Physiol Rev, 92(3), 1393-1478. doi:10.1152/physrev.00036.2011

Wahl-Schott, C., & Biel, M. (2009). HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci, 66(3), 470-494. doi:10.1007/s00018-008- 8525-0

Walsh, K. B. (2020). Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators. SLAS Discov, 25(5), 420-433. doi:10.1177/2472555220905558

Wang, W., & MacKinnon, R. (2017). Cryo-EM Structure of the Open Human Ether-a-go-goRelated K(+) Channel hERG. Cell, 169(3), 422-430.e410. doi:10.1016/j.cell.2017.03.048

Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., & El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal, 38, 76- 84. doi:10.1016/j.cellsig.2017.06.020

Wright, P. D., Kanumilli, S., Tickle, D., Cartland, J., Bouloc, N., Dale, T., . . . Jerman, J. C. (2015). A High-Throughput Electrophysiology Assay Identifies Inhibitors of the Inwardly Rectifying Potassium Channel Kir7.1. J Biomol Screen, 20(6), 739-747. doi:10.1177/1087057115569156

Zhang, A. D., Puthumana, J., Downing, N. S., Shah, N. D., Krumholz, H. M., & Ross, J. S. (2020). Assessment of Clinical Trials Supporting US Food and Drug Administration Approval of Novel Therapeutic Agents, 1995-2017. JAMA Netw Open, 3(4), e203284. doi:10.1001/jamanetworkopen.2020.3284

Zhuang, Q. X., Li, G. Y., Li, B., Zhang, C. Z., Zhang, X. Y., Xi, K., . . . Zhu, J. N. (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る