リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A motor neuron disease-associated mutation produces non-glycosylated Seipin that induces ER stress and apoptosis by inactivating SERCA2b」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A motor neuron disease-associated mutation produces non-glycosylated Seipin that induces ER stress and apoptosis by inactivating SERCA2b

Saito, Shunsuke Ishikawa, Tokiro Ninagawa, Satoshi Okada, Tetsuya Mori, Kazutoshi 京都大学 DOI:10.7554/eLife.74805

2022.11.29

概要

A causal relationship between endoplasmic reticulum (ER) stress and the development of neurodegenerative diseases remains controversial. Here, we focused on Seipinopathy, a dominant motor neuron disease, based on the finding that its causal gene product, Seipin, is a protein that spans the ER membrane twice. Gain-of-function mutations of Seipin produce non-glycosylated Seipin (ngSeipin), which was previously shown to induce ER stress and apoptosis at both cell and mouse levels albeit with no clarified mechanism. We found that aggregation-prone ngSeipin dominantly inactivated SERCA2b, the major calcium pump in the ER, and decreased the calcium concentration in the ER, leading to ER stress and apoptosis in human colorectal carcinoma-derived cells (HCT116). This inactivation required oligomerization of ngSeipin and direct interaction of the C-terminus of ngSeipin with SERCA2b, and was observed in Seipin-deficient neuroblastoma (SH-SY5Y) cells expressing ngSeipin at an endogenous protein level. Our results thus provide a new direction to the controversy noted above.

この論文で使われている画像

参考文献

Abrenica B, Gilchrist JS. 2000. Nucleoplasmic Ca (2+) loading is regulated by mobilization of perinuclear Ca (2+). Cell Calcium 28:127–136. DOI: https://doi.org/10.1054/ceca.2000.0137, PMID: 10970769

Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A. 2002. Agpat2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nature Genetics 31:21–23. DOI: https://doi.org/10.1038/ng880, PMID: 11967537

Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu G, Wang Y, Huang X. 2014. Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metabolism 19:861–871. DOI: https://doi.org/10.1016/j. cmet.2014.03.028, PMID: 24807223

Cartwright BR, Goodman JM. 2012. Seipin: from human disease to molecular mechanism. Journal of Lipid Research 53:1042–1055. DOI: https://doi.org/10.1194/jlr.R023754, PMID: 22474068

Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. DOI: https://doi.org/10.1038/nature12354, PMID: 23868258

Cornea RL, Gruber SJ, Lockamy EL, Muretta JM, Jin D, Chen J, Dahl R, Bartfai T, Zsebo KM, Gillispie GD, Thomas DD. 2013. High-Throughput FRET assay yields allosteric SERCA activators. Journal of Biomolecular Screening 18:97–107. DOI: https://doi.org/10.1177/1087057112456878, PMID: 22923787

Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, de Gruiter HM, Kremers G-J, Davidson MW, Ustione A, Piston DW. 2016. Quantitative assessment of fluorescent proteins. Nature Methods 13:557–562. DOI: https:// doi.org/10.1038/nmeth.3891, PMID: 27240257

Cruzblanca H, Koh DS, Hille B. 1998. Bradykinin inhibits M current via phospholipase C and ca2+ release from IP3-sensitive ca2+ stores in rat sympathetic neurons. PNAS 95:7151–7156. DOI: https://doi.org/10.1073/pnas. 95.12.7151, PMID: 9618554

Cui X, Wang Y, Tang Y, Liu Y, Zhao L, Deng J, Xu G, Peng X, Ju S, Liu G, Yang H. 2011. Seipin ablation in mice results in severe generalized lipodystrophy. Human Molecular Genetics 20:3022–3030. DOI: https://doi.org/10. 1093/hmg/ddr205, PMID: 21551454

Dally S, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Fanchaouy M, Gelebart P, Monceau V, Del Monte F, Gwathmey JK, Hajjar R, Chaabane C, Bobe R, Raies A, Enouf J. 2006. Ca2+-Atpases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). The Biochemical Journal 395:249–258. DOI: https://doi.org/10.1042/BJ20051427, PMID: 16402920

Feles S, Overath C, Reichardt S, Diegeler S, Schmitz C, Kronenberg J, Baumstark-Khan C, Hemmersbach R, Hellweg CE, Liemersdorf C. 2022. Streamlining culture conditions for the neuroblastoma cell line SH-SY5Y: a prerequisite for functional studies. Methods and Protocols 5:58. DOI: https://doi.org/10.3390/mps5040058, PMID: 35893584

Garg A, Wilson R, Barnes R, Arioglu E, Zaidi Z, Gurakan F, Kocak N, O’Rahilly S, Taylor SI, Patel SB, Bowcock AM. 1999. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. The Journal of Clinical Endocrinology and Metabolism 84:3390–3394. DOI: https://doi.org/10.1210/jcem.84.9.6103, PMID: 10487716

Gélébart P, Martin V, Enouf J, Papp B. 2003. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochemical and Biophysical Research Communications 303:676–684. DOI: https:// doi.org/10.1016/s0006-291x(03)00405-4, PMID: 12659872

George G, Ninagawa S, Yagi H, Furukawa J-I, Hashii N, Ishii-Watabe A, Deng Y, Matsushita K, Ishikawa T, Mamahit YP, Maki Y, Kajihara Y, Kato K, Okada T, Mori K. 2021. Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from m8b in mammalian glycoprotein ERAD. eLife 10:e70357. DOI: https://doi.org/10.7554/eLife.70357, PMID: 34698634

Gruber SJ, Cornea RL, Li J, Peterson KC, Schaaf TM, Gillispie GD, Dahl R, Zsebo KM, Robia SL, Thomas DD. 2014. Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells. Journal of Biomolecular Screening 19:215–222. DOI: https://doi.org/10.1177/1087057113510740, PMID: 24436077

GTEx Consortium. 2015. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 348:648–660. DOI: https://doi.org/10.1126/science.1262110, PMID: 25954001

Ito D, Suzuki N. 2007. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Annals of Neurology 61:237–250. DOI: https://doi.org/10.1002/ana.21070, PMID: 17387721

Ito D, Suzuki N. 2009. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132:8–15. DOI: https://doi.org/10.1093/brain/awn216, PMID: 18790819

Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle FT, Davis-Dusenbery BN, Ziller M, Oakley D, Ichida J, Di Costanzo S, Atwater N, Maeder ML, Goodwin MJ, et al. 2014. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795. DOI: https://doi.org/10.1016/j.stem.2014.03.004, PMID: 24704492

Lundin C, Nordström R, Wagner K, Windpassinger C, Andersson H, von Heijne G, Nilsson I. 2006. Membrane topology of the human seipin protein. FEBS Letters 580:2281–2284. DOI: https://doi.org/10.1016/j.febslet. 2006.03.040, PMID: 16574104

Lytton J, Westlin M, Hanley MR. 1991. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. The Journal of Biological Chemistry 266:17067–17071. DOI: https://doi. org/10.1016/S0021-9258(19)47340-7, PMID: 1832668

Magré J, Delépine M, Khallouf E, Gedde-Dahl T, Van Maldergem L, Sobel E, Papp J, Meier M, Mégarbané A, Bachy A, Verloes A, d’Abronzo FH, Seemanova E, Assan R, Baudic N, Bourut C, Czernichow P, Huet F, Grigorescu F, de Kerdanet M, et al. 2001. Identification of the gene altered in berardinelli-seip congenital lipodystrophy on chromosome 11q13. Nature Genetics 28:365–370. DOI: https://doi.org/10.1038/ng585, PMID: 11479539

Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, Suzuki H, Iizuka H. 2006. Comprehensive analysis of expression and function of 51 sarco (endo) plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. The Journal of Biological Chemistry 281:22882–22895. DOI: https://doi.org/10. 1074/jbc.M601966200, PMID: 16766529

Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K. 2014. Edem2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. The Journal of Cell Biology 206:347–356. DOI: https://doi.org/10.1083/jcb.201404075, PMID: 25092655

Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB, Owegi MA, Quick A, Wymer J, Goutman SA, Heitzman D, Heiman-Patterson T, Jackson CE, Quinn C, Rothstein JD, Kasarskis EJ, Katz J, Jenkins L, et al. 2020. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. The New England Journal of Medicine 383:919–930. DOI: https://doi.org/10.1056/NEJMoa1916945, PMID: 32877582

Paganoni S, Hendrix S, Dickson SP, Knowlton N, Macklin EA, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB, Owegi MA, Quick A, Wymer J, Goutman SA, Heitzman D, Heiman-Patterson TD, Jackson CE, Quinn C, Rothstein JD, Kasarskis EJ, et al. 2021. Long-Term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle & Nerve 63:31–39. DOI: https://doi.org/ 10.1002/mus.27091, PMID: 33063909

Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S, Fonseca NA, Füllgrabe A, Green M, Huang N, Huerta L, Iqbal H, Jianu M, Mohammed S, Zhao L, Jarnuczak AF, Jupp S, Marioni J, Meyer K, Petryszak R, et al. 2020. Expression atlas update: from tissues to single cells. Nucleic Acids Research 48:D77–D83. DOI: https://doi.org/10.1093/nar/gkz947, PMID: 31665515

Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. 2020. Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising bip-substrate complexes. eLife 9:e62601. DOI: https://doi.org/10.7554/ eLife.62601, PMID: 33295873

Roberts RF, Wade-Martins R, Alegre-Abarrategui J. 2015. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 138:1642–1657. DOI: https://doi. org/10.1093/brain/awv040, PMID: 25732184

Roschke AV, Stover K, Tonon G, Schäffer AA, Kirsch IR. 2002. Stable karyotypes in epithelial cancer cell lines despite high rates of ongoing structural and numerical chromosomal instability. Neoplasia 4:19–31. DOI: https://doi.org/10.1038/sj.neo.7900197, PMID: 11922387

Sambrook EE, Fritsch J, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Sim MFM, Talukder MMU, Dennis RJ, O’Rahilly S, Edwardson JM, Rochford JJ. 2013. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56:2498–2506. DOI: https://doi.org/10.1007/s00125-013-3029-3, PMID: 23989774

Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV, Walther TC. 2018. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. The Journal of Cell Biology 217:4080–4091. DOI: https://doi.org/10.1083/jcb.201809067, PMID: 30327422

Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M. 2014. Imaging intraorganellar ca2+ at subcellular resolution using CEPIA. Nature Communications 5:4153. DOI: https://doi.org/10.1038/ncomms5153, PMID: 24923787

Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RGW, Goodman JM. 2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. PNAS 104:20890–20895. DOI: https://doi.org/10.1073/pnas.0704154104, PMID: 18093937

Tian Y, Bi J, Shui G, Liu Z, Xiang Y, Liu Y, Wenk MR, Yang H, Huang X. 2011. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLOS Genetics 7:e1001364. DOI: https://doi. org/10.1371/journal.pgen.1001364, PMID: 21533227

Van Maldergem L, Magré J, Khallouf TE, Gedde-Dahl T Jr, Delépine M, Trygstad O, Seemanova E, Stephenson T, Albott CS, Bonnici F, Panz VR, Medina JL, Bogalho P, Huet F, Savasta S, Verloes A, Robert JJ, Loret H, De Kerdanet M, Tubiana-Rufi N, et al. 2002. Genotype-Phenotype relationships in berardinelli-seip congenital lipodystrophy. Journal of Medical Genetics 39:722–733. DOI: https://doi.org/10.1136/jmg.39.10. 722, PMID: 12362029

Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SSW, Sandoe J, Perez NP, Williams LA, Lee S, Boulting G, Berry JD, Brown RH Jr, Cudkowicz ME, Bean BP, Eggan K, Woolf CJ. 2014. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports 7:1–11. DOI: https://doi.org/10. 1016/j.celrep.2014.03.019, PMID: 24703839

Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R. 2000. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. The Journal of Biological Chemistry 275:27013– 27020. DOI: https://doi.org/10.1074/jbc.M003322200, PMID: 10856300

Wang C-W, Miao Y-H, Chang Y-S. 2014. Control of lipid droplet size in budding yeast requires the collaboration between fld1 and ldb16. Journal of Cell Science 127:1214–1228. DOI: https://doi.org/10.1242/jcs.137737, PMID: 24434579

Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, Garg A, Olarte MJ, Lin Q, Fröhlich F, Hannibal-Bach HK, Upadhyayula S, Perrimon N, Kirchhausen T, Ejsing CS, Walther TC, et al. 2016. Seipin is required for converting nascent to mature lipid droplets. eLife 5:e16582. DOI: https://doi.org/10.7554/eLife.16582, PMID: 27564575

Windpassinger C, Auer-Grumbach M, Irobi J, Patel H, Petek E, Hörl G, Malli R, Reed JA, Dierick I, Verpoorten N, Warner TT, Proukakis C, Van den Bergh P, Verellen C, Van Maldergem L, Merlini L, De Jonghe P, Timmerman V, Crosby AH, Wagner K. 2004. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and silver syndrome. Nature Genetics 36:271–276. DOI: https://doi.org/10.1038/ng1313, PMID: 14981520

Yagi T, Ito D, Nihei Y, Ishihara T, Suzuki N. 2011. N88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2-related motor neuron disease via endoplasmic reticulum stress. Human Molecular Genetics 20:3831–3840. DOI: https://doi.org/10.1093/hmg/ddr304, PMID: 21750110

Yan R, Qian H, Lukmantara I, Gao M, Du X, Yan N, Yang H. 2018. Human seipin binds anionic phospholipids. Developmental Cell 47:248–256.. DOI: https://doi.org/10.1016/j.devcel.2018.09.010, PMID: 30293840

Yoshida H, Haze K, Yanagi H, Yura T, Mori K. 1998. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins involvement of basic leucine zipper transcription factors. The Journal of Biological Chemistry 273:33741– 33749. DOI: https://doi.org/10.1074/jbc.273.50.33741, PMID: 9837962

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 2001. Xbp1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891. DOI: https://doi.org/ 10.1016/s0092-8674(01)00611-0, PMID: 11779464

Yusuf M, Leung K, Morris KJ, Volpi EV. 2013. Comprehensive cytogenomic profile of the in vitro neuronal model SH-SY5Y. Neurogenetics 14:63–70. DOI: https://doi.org/10.1007/s10048-012-0350-9, PMID: 23224213

Zorzato F, Scutari E, Tegazzin V, Clementi E, Treves S. 1993. Chlorocresol: an activator of ryanodine receptor- mediated Ca2+ release. Molecular Pharmacology 44:1192–1201 PMID: 8264556

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る