リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Differentiation of hypertrophic chondrocytes from human iPSCs for the in vitro modeling of chondrodysplasias」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Differentiation of hypertrophic chondrocytes from human iPSCs for the in vitro modeling of chondrodysplasias

Pretemer, Yann Kawai, Shunsuke Nagata, Sanae Nishio, Megumi Watanabe, Makoto Tamaki, Sakura Alev, Cantas Yamanaka, Yoshihiro Xue, Jing-Yi Wang, Zheng Fukiage, Kenichi Tsukanaka, Masako Futami, Tohru Ikegawa, Shiro Toguchida, Junya 京都大学 DOI:10.1016/j.stemcr.2021.01.014

2021.02.25

概要

Chondrodysplasias are hereditary diseases caused by mutations in the components of growth cartilage. Although the unfolded protein response (UPR) has been identified as a key disease mechanism in mouse models, no suitable in vitro system has been reported to analyze the pathology in humans. Here, we developed a three-dimensional culture protocol to differentiate hypertrophic chondrocytes from induced pluripotent stem cells (iPSCs) and examine the phenotype caused by MATN3 and COL10A1 mutations. Intracellular MATN3 or COL10 retention resulted in increased ER stress markers and ER size in most mutants, but activation of the UPR was dependent on the mutation. Transcriptome analysis confirmed a UPR with wide-ranging changes in bone homeostasis, extracellular matrix composition, and lipid metabolism in the MATN3 T120M mutant, which further showed altered cellular morphology in iPSC-derived growth-plate-like structures in vivo. We then applied our in vitro model to drug testing, whereby trimethylamine N-oxide led to a reduction of ER stress and intracellular MATN3.

この論文で使われている画像

参考文献

Bo¨hm, B., Hess, S., Krause, K., Schirner, A., Ewald, W., Aigner, T.,

and Burkhardt, H. (2010). ADAM15 exerts an antiapoptotic effect

on osteoarthritic chondrocytes via up-regulation of the X-linked

inhibitor of apoptosis. Arthritis Rheum. 62, 1372–1382.

Borochowitz, Z.U., Scheffer, D., Adir, V., Dagoneau, N., Munnich,

A., and Cormier-Daire, V. (2004). Spondylo-epi-metaphyseal

14 Stem Cell Reports j Vol. 16 j 1–16 j March 9, 2021

dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J. Med. Genet. 41, 366–372.

Cameron, T.L., Bell, K.M., Gresshoff, I.L., Sampurno, L., Mullan, L.,

Ermann, J., Glimcher, L.H., Boot-Handford, R.P., and Bateman, J.F.

(2015). XBP1-independent UPR pathways suppress C/EBP-b mediated chondrocyte differentiation in ER-stress related skeletal disease. PLoS Genet. 11, e1005505.

Cameron, T.L., Bell, K.M., Tatarczuch, L., Mackie, E.J., Rajpar, M.H.,

McDermott, B.T., Boot-Handford, R.P., and Bateman, J.F. (2011).

Transcriptional profiling of chondrodysplasia growth plate cartilage reveals adaptive ER-stress networks that allow survival but

disrupt hypertrophy. PLoS One 6, e24600.

Chan, D., Ho, M.S., and Cheah, K.S. (2001). Aberrant signal peptide cleavage of collagen X in Schmid metaphyseal chondrodysplasia. Implications for the molecular basis of the disease. J. Biol.

Chem. 276, 7992–7997.

Chan, D., Weng, Y.M., Graham, H.K., Sillence, D.O., and Bateman,

J.F. (1998). A nonsense mutation in the carboxyl-terminal domain

of type X collagen causes haploinsufficiency in schmid metaphyseal chondrodysplasia. J. Clin. Invest. 101, 1490–1499.

Cotterill, S.L., Jackson, G.C., Leighton, M.P., Wagener, R., Ma¨kitie,

O., Cole, W.G., and Briggs, M.D. (2005). Multiple epiphyseal

dysplasia mutations in MATN3 cause misfolding of the A-domain

and prevent secretion of mutant matrilin-3. Hum. Mutat. 26, 557–

565.

Czarny-Ratajczak, M., Lohiniva, J., Rogala, P., Kozlowski, K., Pera¨la¨,

M., Carter, L., Spector, T.D., Kolodziej, L., Seppa¨nen, U., Glazar, R.,

et al. (2001). A mutation in COL9A1 causes multiple epiphyseal

dysplasia: further evidence for locus heterogeneity. Am. J. Hum.

Genet. 69, 969–980.

Forouhan, M., Sonntag, S., and Boot-Handford, R.P. (2018). Carbamazepine reduces disease severity in a mouse model of metaphyseal chondrodysplasia type Schmid caused by a premature stop

codon (Y632X) in the Col10a1 gene. Hum. Mol. Genet. 27,

3840–3853.

Frara, N., Abdelmagid, S.M., Sondag, G.R., Moussa, F.M., Yingling,

V.R., Owen, T.A., Popoff, S.N., Barbe, M.F., and Safadi, F.F. (2016).

Transgenic expression of osteoactivin/gpnmb enhances bone formation in vivo and osteoprogenitor differentiation ex vivo.

J. Cell. Physiol. 231, 72–83.

Gregory, C.A., Zabel, B., Grant, M.E., Boot-Handford, R.P., and

Wallis, G.A. (2000). Equal expression of type X collagen mRNA

from mutant and wild type COL10A1 alleles in growth plate cartilage from a patient with metaphyseal chondrodysplasia type

Schmid. J. Med. Genet. 37, 627–629.

Hartley, C.L., Edwards, S., Mullan, L., Bell, P.A., Fresquet, M., BootHandford, R.P., and Briggs, M.D. (2013). Armet/Manf and Creld2

are components of a specialized ER stress response provoked by

inappropriate formation of disulphide bonds: implications for genetic skeletal diseases. Hum. Mol. Genet. 22, 5262–5275.

Hessle, L., Stordalen, G.A., Wengle´n, C., Petzold, C., Tanner, K.E.,

¨ nnerfjord, P., Reinholt, F.P., and

Brorson, S.H., Baekkevold, E.S., O

Heinega˚rd, D. (2013). The skeletal phenotype of chondroadherin

deficient mice. PLoS One 8, e63080.

A Self-archived copy in

Please cite this article in press as: Pretemer et al., Differentiation

of hypertrophic

chondrocytes from human iPSCs for the in vitro modeling

Kyoto University Research

Information Repository

of chondrodysplasias, Stem Cell Reports (2021), https://doi.org/10.1016/j.stemcr.2021.01.014

https://repository.kulib.kyoto-u.ac.jp

Ikegawa, S., Nakamura, K., Nagano, A., Haga, N., and Nakamura, Y.

(1997). Mutations in the N-terminal globular domain of the type X

collagen gene (COL10A1) in patients with Schmid metaphyseal

chondrodysplasia. Hum. Mutat. 9, 131–135.

Jackson, G.C., Barker, F.S., Jakkula, E., Czarny-Ratajczak, M., Ma¨kitie, O., Cole, W.G., Wright, M.J., Smithson, S.F., Suri, M., Rogala, P.,

et al. (2004). Missense mutations in the beta strands of the single Adomain of matrilin-3 result in multiple epiphyseal dysplasia.

J. Med. Genet. 41, 52–59.

Karl, A., Olbrich, N., Pfeifer, C., Berner, A., Zellner, J., Kujat, R., Angele, P., Nerlich, M., and Mueller, M.B. (2014). Thyroid hormoneinduced hypertrophy in mesenchymal stem cell chondrogenesis

is mediated by bone morphogenetic protein-4. Tissue Eng. Part

A. 20, 178–188.

Kawai, S., Yoshitomi, H., Sunaga, J., Alev, C., Nagata, S., Nishio, M.,

Hada, M., Koyama, Y., Uemura, M., Sekiguchi, K., et al. (2019).

In vitro bone-like nodules generated from patient-derived iPSCs

recapitulate pathological bone phenotypes. Nat. Biomed. Eng. 3,

558–570.

Kim, H.Y., Yoon, J.Y., Yun, J.H., Cho, K.W., Lee, S.H., Rhee, Y.M.,

Jung, H.S., Lim, H.J., Lee, H., Choi, J., et al. (2015). CXXC5 is a

negative-feedback regulator of the Wnt/b-catenin pathway

involved in osteoblast differentiation. Cell Death Differ. 22, 912–

920.

Kim, O.H., Park, H., Seong, M.W., Cho, T.J., Nishimura, G., SupertiFurga, A., Unger, S., Ikegawa, S., Choi, I.H., Song, H.R., et al. (2011).

Revisit of multiple epiphyseal dysplasia: ethnic difference in genotypes and comparison of radiographic features linked to the COMP

and MATN3 genes. Am. J. Med. Genet. A 155A, 2669–2680.

(2020). Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129.

Mortier, G.R., Cohn, D.H., Cormier-Daire, V., Hall, C., Krakow, D.,

Mundlos, S., Nishimura, G., Robertson, S., Sangiorgi, L., Savarirayan, R., et al. (2019). Nosology and classification of genetic skeletal disorders: 2019 revision. Am. J. Med. Genet. A 179, 2393–2419.

Mueller, M.B., and Tuan, R.S. (2008). Functional characterization

of hypertrophy in chondrogenesis of human mesenchymal stem

cells. Arthritis Rheum. 58, 1377–1388.

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T.,

Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M.,

et al. (2014). A novel efficient feeder-free culture system for the

derivation of human induced pluripotent stem cells. Sci. Rep. 4,

3594.

Okada, M., Ikegawa, S., Morioka, M., Yamashita, A., Saito, A., Sawai, H., Murotsuki, J., Ohashi, H., Okamoto, T., Nishimura, G.,

et al. (2015). Modeling type II collagenopathy skeletal dysplasia

by directed conversion and induced pluripotent stem cells. Hum.

Mol. Genet. 24, 299–313.

Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al.

(2011). A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412.

Paradise, C.R., Galeano-Garces, C., Galeano-Garces, D., Dudakovic, A., Milbrandt, T.A., Saris, D.B.F., Krych, A.J., Karperien,

M., Ferguson, G.B., Evseenko, D., et al. (2018). Molecular characterization of physis tissue by RNA sequencing. Gene 668,

87–96.

Kobayashi, T., Chung, U.I., Schipani, E., Starbuck, M., Karsenty, G.,

Katagiri, T., Goad, D.L., Lanske, B., and Kronenberg, H.M. (2002).

PTHrP and Indian hedgehog control differentiation of growth

plate chondrocytes at multiple steps. Development 129, 2977–

2986.

Pirog, K.A., Dennis, E.P., Hartley, C.L., Jackson, R.M., Soul, J.,

Schwartz, J.M., Bateman, J.F., Boot-Handford, R.P., and Briggs,

M.D. (2019). XBP1 signalling is essential for alleviating mutant

protein aggregation in ER-stress related skeletal disease. PLoS

Genet. 15, e1008215.

Kwan, K.M., Pang, M.K., Zhou, S., Cowan, S.K., Kong, R.Y., Pfordte,

T., Olsen, B.R., Sillence, D.O., Tam, P.P., and Cheah, K.S. (1997).

Abnormal compartmentalization of cartilage matrix components

in mice lacking collagen X: implications for function. J. Cell Biol.

136, 459–471.

Posey, K.L., Coustry, F., Veerisetty, A.C., Liu, P., Alcorn, J.L., and

Hecht, J.T. (2014). Chondrocyte-specific pathology during skeletal

growth and therapeutics in a murine model of pseudoachondroplasia. J. Bone Miner. Res. 29, 1258–1268.

Leighton, M.P., Nundlall, S., Starborg, T., Meadows, R.S., Suleman,

F., Knowles, L., Wagener, R., Thornton, D.J., Kadler, K.E., BootHandford, R.P., et al. (2007). Decreased chondrocyte proliferation

and dysregulated apoptosis in the cartilage growth plate are key

features of a murine model of epiphyseal dysplasia caused by a

matn3 mutation. Hum. Mol. Genet. 16, 1728–1741.

Loh, K.M., Chen, A., Koh, P.W., Deng, T.Z., Sinha, R., Tsai, J.M., Barkal, A.A., Shen, K.Y., Jain, R., Morganti, R.M., et al. (2016). Mapping

the pairwise choices leading from pluripotency to human bone,

heart, and other mesoderm cell types. Cell 166, 451–467.

Ma¨kitie, O., Susic, M., Ward, L., Barclay, C., Glorieux, F.H., and

Cole, W.G. (2005). Schmid type of metaphyseal chondrodysplasia

and COL10A1 mutations—findings in 10 patients. Am. J. Med.

Genet. A 137A, 241–248.

Matsuda, M., Yamanaka, Y., Uemura, M., Osawa, M., Saito, M.K.,

Nagahashi, A., Nishio, M., Guo, L., Ikegawa, S., Sakurai, S., et al.

Rajpar, M.H., McDermott, B., Kung, L., Eardley, R., Knowles,

L., Heeran, M., Thornton, D.J., Wilson, R., Bateman, J.F., Poulsom, R., et al. (2009). Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet. 5,

e1000691.

Tsushima, H., Tang, Y.J., Puviindran, V., Hsu, S.C., Nadesan, P., Yu,

C., Zhang, H., Mirando, A.J., Hilton, M.J., and Alman, B.A. (2018).

Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development 145, dev162396.

Umeda, K., Zhao, J., Simmons, P., Stanley, E., Elefanty, A., and Nakayama, N. (2012). Human chondrogenic paraxial mesoderm,

directed specification and prospective isolation from pluripotent

stem cells. Sci. Rep. 2, 455.

van der Weyden, L., Wei, L., Luo, J., Yang, X., Birk, D.E., Adams,

D.J., Bradley, A., and Chen, Q. (2006). Functional knockout of

the matrilin-3 gene causes premature chondrocyte maturation to

Stem Cell Reports j Vol. 16 j 1–16 j March 9, 2021 15

A Self-archived copy in

Please cite this article in press as: Pretemer et al., Differentiation

of hypertrophic

chondrocytes from human iPSCs for the in vitro modeling

Kyoto University Research

Information Repository

of chondrodysplasias, Stem Cell Reports (2021), https://doi.org/10.1016/j.stemcr.2021.01.014

https://repository.kulib.kyoto-u.ac.jp

hypertrophy and increases bone mineral density and osteoarthritis. Am. J. Pathol. 169, 515–527.

Wang, J., Zhou, J., and Bondy, C.A. (1999). Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB J. 13, 1985–1990.

Wang, C., Tan, Z., Niu, B., Tsang, K.Y., Tai, A., Chan, W.C.W., Lo,

R.L.K., Leung, K.K.H., Dung, N.W.F., Itoh, N., et al. (2018). Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife

7, e37673.

Wilson, R., Freddi, S., Chan, D., Cheah, K.S., and Bateman, J.F.

(2005). Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide

bond formation, intracellular retention, and activation of the

unfolded protein response. J. Biol. Chem. 280, 15544–15552.

16 Stem Cell Reports j Vol. 16 j 1–16 j March 9, 2021

...

参考文献をもっと見る