リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「阿蘇火山2014-2015年活動期におけるマグマヘッドの深さの時間変化」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

阿蘇火山2014-2015年活動期におけるマグマヘッドの深さの時間変化

石井, 杏佳 京都大学 DOI:10.14989/doctor.k23708

2022.03.23

概要

本論文は、噴火活動期のマグマヘッドの深さを推定する新たな手法を提案したものである。そして、同手法を阿蘇火山の2014–2015年活動期の地震動・空振データに適用することで、半年間にわたるマグマヘッドの深さおよび火道形状の変化を明らかにし、これをふまえて噴火活動の変遷事由を推察した。

近年、火山噴火ダイナミクスや噴火活動推移を理解するために、空振観測結果を利用したさまざまな研究が進んできている。そのなかの一つに、火道最上部のマグマ ヘッドの深さを推定することが挙げられる。マグマヘッドの変動は、マグマ供給率の変化を直接反映するものであり、爆発的な噴火活動の直前に急速なマグマヘッドの上昇があったことが数多く報告されている。マグマヘッド深さの推定には、これまで主に二つの手法がとられてきた。一つは空振ピーク周波数を用いて深度情報に変換するものであり、もう一つは地震波・空振の到着時間差を利用するものである。しかし、いずれの方法も火道内音速を仮定しなければならず、正確な深度推定をすることは難しいとされてきた。

本論文では、到来時間差とピーク周波数を統合解析することで、マグマヘッドの深さと火道内音速の両方を同時に推定する新しい手法を提案した。そして、阿蘇火山の 2015年4月下旬のデータに適用し、同手法の妥当性を検討した。使用した阿蘇火山のデータは地震動・空振シグナル到来時間差が大きくばらつき、また、空振のスペクトル構造に明瞭な複数のピークがみられた。これらの特徴から、ストロンボリ式噴火がマグマヘッド表面のさまざまな位置で発生していることや、火道形状は深くなるほど径の大きくなる円錐台型であったことが明らかになった。このような噴火発生環境をふまえてマグマヘッドの深さを推定したところ、火口底から60–190 mという値が見積もられた。この値は、従来手法の一つであるシグナル到来時間差だけを使用した場合よりも狭い範囲に集中し、確度の高いものであった。また、別の従来手法である、単純な円筒火道を仮定して空振卓越周波数から推定された深さよりも有意に浅くなり、より現実的な値を示す結果となった。一方で、火道内音速は300–780 m/sと見積もられ、計算想定範囲からさらに精度よく制約するには至らなかった。

提案した推定新手法を、阿蘇火山2014–2015年活動期全体の地震動・空振データに適用して、マグマヘッド深さの時間変化を見積もった。その結果、2014年末の噴火活動開始直後は深さ200 m程度に位置していたマグマヘッドが、2015年1月ごろから120 m 付近の浅い領域に移動したことが明らかになった。同時期の地盤変動データや噴出火山灰粒子の特徴を合わせて考えると、新しいマグマの貫入によってマグマ供給率が増加したと解釈される。また、このマグマヘッド上昇にともなって、火道形状が円筒型から円錐台型へと変化したこともわかった。このような形状変化は、貫入マグマの熱によって火道壁が熱され、壁面が劣化・崩落したことが原因だと考えられる。その後は、小規模なマグマ供給が何度か繰り返され、噴火活動の終息までマグマヘッドは浅い領域にとどまっていた。活動期間をとおして、火道最上部マグマの気泡含有率が増減する様子も推測され、ストロンボリ式噴火や灰噴火の発生様式が時間経過とともに変化していったという解釈につながった。噴火活動が終息する数日前には、ドレインバックによってマグマヘッドが50 m低下したことも明らかになった。比較的小規模なドレインバックであったにも関わらず、直後に火口底陥没が誘発されたのは、円錐台型という物理的に不安定な形状のまま火道内空間が成長し続けたためであったと結論づけた。

参考文献

Allen R. V (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America 68(5):1521–1532. doi:10.1785/BSSA0680051521.

Anzieta J. C, Ortiz H. D, Arias G. L, and Ruiz M. C (2019). Finding possible precursors for the 2015 Cotopaxi Volcano eruption using unsupervised machine learning techniques. International Journal of Geophysics 2019:6526898. doi:10.1155/2019/6526898.

Ayers R. D, Eliason L. J, and Mahgerefteh D (1985). The conical bore in musical acoustics. American Journal of Physics 53(6):528–537. doi:10.1119/1.14233.

Cannavo’ F, Sciotto M, Cannata A, and Di Grazia G (2019). An integrated geophysical approach to track magma intrusion: The 2018 Christmas Eve eruption at Mount Etna. Geophysical Research Letters 46(14):8009–8017. doi:10.1029/2020GL088077.

Capponi A, Lane S. J, and James M. R (2017). The implications of gas slug ascent in a stratified magma for acoustic and ground deformation source mechanisms in Strombolian eruptions. Earth and Planetary Science Letters 468:101–111. doi:10.1016/j.epsl.2017.04.008.

Capponi A, Taddeucci J, Scarlato P, and Palladino D. M (2016). Recycled ejecta modulating Strombolian explosions. Bulletin of Volcanology 78:13. doi:10.1007/s00445-016-1001-z.

Chouet B, Saccorotti G, Martini M, Dawson P, De Luca G, Milana G, and Scarpa R (1997). Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy. Journal of Geophysical Research: Solid Earth 102(B7):15129–15150. doi:10.1029/97JB00953.

Chouet B. A (1996). New methods and future trends in seismological volcano monitoring. In: Scarpa R and Tilling R (eds) Monitoring and Mitigation of Volcano Hazards 23–97. Springer Berlin.

Cigala V, Kueppers U, Peña Fernández J. J, Taddeucci J, Sesterhenn J, and Dingwell D. B (2017). The dynamics of volcanic jets: Temporal evolution of particles exit velocity from shock-tube experiments. Journal of Geophysical Research: Solid Earth 122(8):6031–6045. doi:10.1002/2017JB014149.

Del Bello E, Lane S. J, James M. R, Llewellin E. W, Taddeucci J, Scarlato P, and Capponi A (2015). Viscous plugging can enhance and modulate explosivity of strombolian eruptions. Earth and Planetary Science Letters 423:210–218. doi:10.1016/j.epsl.2015.04.034.

Dibble R. R (1994). Velocity modeling in the erupting magma column of Mount Erebus, Antarctica. In: Kyle P (ed) Volcanological and Environmental Studies of Mount Erebus, Antarctica, Antarctic Research Series 66 17–33. AGU Washington, D.C.

Dürig T, Gudmundsson M. T, and Dellino P (2015). Reconstruction of the geometry of volcanic vents by trajectory tracking of fast ejecta - the case of the Eyjafjallajökull 2010 eruption (Iceland). Earth, Planets and Space 67:64. doi:10.1186/s40623-015-0243-x.

Dvorak J. J (1992). Mechanism of explosive eruptions of Kilauea Volcano, Hawaii. Bulletin of Volcanology 54:638–645. doi:10.1007/BF00430777.

Eychenne J, Houghton B. F, Swanson D. A, Carey R. J, and Swavely L (2015). Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, K¯ılauea Caldera. Earth and Planetary Science Letters 409:49–60. doi:10.1016/j.epsl.2014.10.045.

Fee D, Garcés M, Patrick M, Chouet B, Dawson P, and Swanson D (2010). Infrasonic harmonic tremor and degassing bursts from Halema’uma’u Crater, Kilauea Volcano, Hawaii. Journal of Geophysical Research: Solid Earth 115:B11316. doi:10.1029/2010JB007642.

Fletcher N. H and Rossing T. D (1998). The Physics of Musical Instruments. Springer-Verlag New York. Gaudin D, Taddeucci J, Scarlato P, Del Bello E, Ricci T, Orr T, Houghton B, Harris A, Rao S, and Bucci A (2017). Integrating puffing and explosions in a general scheme for Strombolian-style activity. Journal of Geophysical Research: Solid Earth 122(3):1860–1875. doi:10.1002/2016JB013707.

Genco R, Ripepe M, Marchetti E, Bonadonna C, and Biass S (2014). Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance. Geophysical Research Letters 41(20):7135–7142. doi:10.1002/2014GL061597.

Goto A and Johnson J. B (2011). Monotonic infrasound and Helmholtz resonance at Volcan Villarrica (Chile). Geophysical Research Letters 38(6):L06301. doi:10.1029/2011GL046858.

Goto A, Ripepe M, and Lacanna G (2014). Wideband acoustic records of explosive volcanic eruptions at Stromboli: New insights on the explosive process and the acoustic source. Geophysical Research Letters 41(11):3851–3857. doi:10.1002/2014GL060143.

Gurioli L, Colo’ L, Bollasina A. J, Harris A. J. L, Whittington A, and Ripepe M (2014). Dynamics of Strombolian explosions: Inferences from field and laboratory studies of erupted bombs from Stromboli volcano. Journal of Geophysical Research: Solid Earth 119(1):319–345. doi:10.1002/2013JB010355.

Hagerty M, Schwartz S. Y, Garces M. A, and Protti M (2000). Analysis of seismic and acoustic obser- vations at Arenal Volcano, Costa Rica, 1995–1997. Journal of Volcanology and Geothermal Research 101(1-2):27–65. doi:10.1016/S0377-0273(00)00162-1.

Hamling I. J, Cevuard S, and Garaebiti E (2019). Large-scale drainage of a complex magmatic system: observations from the 2018 eruption of Ambrym Volcano, Vanuatu. Geophysical Research Letters 46(9):4609–4617. doi:10.1029/2019GL082606.

Harris A and Ripepe M (2007). Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics – A case study from Stromboli. Geochemistry 67(1):1–35. doi:10.1016/j.chemer.2007.01.003.

Ichimura M, Yokoo A, Kagiyama T, Yoshikawa S, and Inoue H (2018). Temporal variation in source location of continuous tremors before ash–gas emissions in January 2014 at Aso volcano, Japan. Earth, Planets and Space 70:125. doi:10.1186/s40623-018-0895-4.

Ishii K, Hayashi Y, and Shimbori T (2018). Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth, Planets and Space 70:19. doi:10.1186/s40623-018-0793-9. Johnson J. B, Ruiz M. C, Ortiz H. D, Watson L. M, Viracucha G, Ramon P, and Almeida M (2018a). Infrasound tornillos produced by Volcán Cotopaxi’s deep crater. Geophysical Research Letters 45(11):5436–5444. doi:10.1029/2018GL077766.

Johnson J. B, Watson L. M, Palma J. L, Dunham E. M, and Anderson J. F (2018b). Forecasting the eruption of an open-vent volcano using resonant infrasound tones. Geophysical Research Letters 45(5):2213–2220. doi:10.1002/2017GL076506.

Jones K. R, Johnson J. B, Aster R, Kyle P. R, and McIntosh W. C (2008). Infrasonic tracking of large bubble bursts and ash venting at Erebus Volcano, Antarctica. Journal of Volcanology and Geothermal Research 177(3):661–672. doi:10.1016/j.jvolgeores.2008.02.001.

Jones L. K, Kyle P. R, Oppenheimer C, Frechette J. D, and Okal M. H (2015). Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research 295:43–54. doi:10.1016/j.jvolgeores.2015.02.011.

Kanda W, Tanaka Y, Utsugi M, Takakura S, Hashimoto T, and Inoue H (2008). A preparation zone for volcanic explosions beneath Naka-dake crater, Aso volcano, as inferred from magnetotelluric surveys. Journal of Volcanology and Geothermal Research 178(1):32–45. doi:10.1016/j.jvolgeores.2008.01.022.

Kanda W, Utsugi M, Takakura S, and Inoue H (2019). Hydrothermal system of the active crater of Aso volcano (Japan) inferred from a three-dimensional resistivity structure model. Earth, Planets and Space 71:37. doi:10.1186/s40623-019-1017-7.

Kim K, Fee D, Yokoo A, and Lees J. M (2015). Acoustic source inversion to estimate volume flux from volcanic explosions. Geophysical Research Letters 42(13):5243–5249. doi:10.1002/2015GL064466.

Kinsler L, Frey A, Coppens A, and Sanders J (1999). Fundamentals of acoustics. Wiley New York. Lacanna G and Ripepe M (2020). Modeling the acoustic flux inside the magmatic conduit by 3D-FDTD simulation. Journal of Geophysical Research: Solid Earth 125(6):e2019JB018849. doi:10.1029/2019JB018849.

Le Pichon A, Pilger C, Ceranna L, Marchetti E, Lacanna G, Souty V, Vergoz J, Listowski C, Hernandez B, Mazet-Roux G, Dupont A, and Hereil P (2021). Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions. Scientific Reports 11:14464. doi:10.1038/s41598- 021-93942-x.

Leduc L, Gurioli L, Harris A, Colò L, and Rose-Koga E (2015). Types and mechanisms of strombolian explosions: characterization of a gas-dominated explosion at Stromboli. Bulletin of Volcanology 77:8. doi:10.1007/s00445-014-0888-5.

McKee K, Fee D, Yokoo A, Matoza R. S, and Kim K (2017). Analysis of gas jetting and fuma- role acoustics at Aso Volcano, Japan. Journal of Volcanology and Geothermal Research 340:16–29. doi:10.1016/j.jvolgeores.2017.03.029.

Meier K, Hort M, Wassermann J, and Garaebiti E (2016). Strombolian surface activity regimes at Yasur volcano, Vanuatu, as observed by Doppler radar, infrared camera and infrasound. Journal of Volcanology and Geothermal Research 322:184–195. doi:10.1016/j.jvolgeores.2015.07.038.

Minami T, Utsugi M, Utada H, Kagiyama T, and Inoue H (2018). Temporal variation in the resistivity structure of the first Nakadake crater, Aso volcano, Japan, during the magmatic eruptions from November 2014 to May 2015, as inferred by the ACTIVE electromagnetic monitoring system. Earth, Planets and Space 70:138. doi:10.1186/s40623-018-0909-2.

Miyabuchi Y and Hara C (2019). Temporal variations in discharge rate and component characteristics of tephra-fall deposits during the 2014–2015 eruption of Nakadake first crater, Aso Volcano, Japan. Earth, Planets and Space 71:44. doi:10.1186/s40623-019-1018-6.

Miyabuchi Y, Iizuka Y, Hara C, Yokoo A, and Ohkura T (2018). The September 14, 2015 phreatomag- matic eruption of Nakadake first crater, Aso Volcano, Japan: Eruption sequence inferred from ballis- tic, pyroclastic density current and fallout deposits. Journal of Volcanology and Geothermal Research 351:41–56. doi:10.1016/j.jvolgeores.2017.12.009.

Morita M (2019). Temporal variations of plume activities before the 8 October 2016 eruption of Aso volcano, Japan, detected by ground-based and satellite measurements. Earth, Planets and Space 71:7. doi:10.1186/s40623-019-0986-x.

Morrissey M. M and Chouet B. A (2001). Trends in long-period seismicity related to magmatic fluid compositions. Journal of Volcanology and Geothermal Research 108(1-4):265–281. doi:10.1016/S0377- 0273(00)00290-0.

Namiki A, Tanaka Y, and Yokoyama T (2018). Physical characteristics of scoriae and ash from 2014–2015 eruption of Aso Volcano, Japan. Earth, Planets and Space 70:147. doi:10.1186/s40623-018-0914-5.

Neal C. A, Brantley S, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang J, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson I. A, Kamibayashi K, Kauahikaua J, Lee R. L, Pekalib S, Miklius A, Million W, Moniz C. J, Nadeau P. A, Okubo P, Parcheta C, Patrick M. R, Shiro B, Swanson D. A, Tollett W, Trusdell F, Younger E. F, Zoeller M. H, Montgomery-Brown E. K, Anderson K. R, Poland M. P, Ball J. L, Bard J, Coombs M, Dietterich H. R, Kern C, Thelen W. A, Cervelli P. F, Orr T, F H. B, Gansecki C, Hazlett R, Lundgren P, Diefenbach A. K, Lerner A. H, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G, and Damby D (2019). The 2018 rift eruption and summit collapse of K¯ılauea Volcano. Science 363(6425):367–374. doi:10.1126/science.aav7046.

Ono K, Watanabe K, Hoshizumi H, and Ikebe S (1995). Ash eruption of the Naka-dake crater, Aso volcano, southwestern Japan. Journal of Volcanology and Geothermal Research 66(1-4):137–148. doi:10.1016/0377-0273(94)00061-K.

Orr T. R, Thelen W. A, Patrick M. R, Swanson D. A, and Wilson D. C (2013). Explosive eruptions triggered by rockfalls at K¯ılauea volcano, Hawai‘i. Geology 41(2):207–210. doi:10.1130/G33564.1.

Palma J. L, Calder E. S, Basualto D, Blake S, and Rothery D. A (2008). Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. Journal of Geophysical Research: Solid Earth 113(B10201). doi:10.1029/2008JB005577.

Patrick M, Orr T, Anderson K, and Swanson D (2019). Eruptions in sync: Improved con- straints on K¯ılauea Volcano’s hydraulic connection. Earth and Planetary Science Letters 507:50–61. doi:10.1016/j.epsl.2018.11.030.

Patrick M. R (2007). Dynamics of Strombolian ash plumes from thermal video: Motion, morphology, and air entrainment. Journal of Geophysical Research: Solid Earth 112:B06202. doi:10.1029/2006JB004387. Patrick M. R, Anderson K. R, Poland M. P, Orr T. R, and Swanson D. A (2015). Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43(9):831–834. doi:10.1130/G36896.1.

Patrick M. R, Harris A. J, Ripepe M, Dehn J, Rothery D. A, and Calvari S (2007). Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bulletin of Volcanology 69:769–784. doi:10.1007/s00445-006-0107-0.

Petersen T and McNutt S. R (2007). Seismo-acoustic signals associated with degassing explo- sions recorded at Shishaldin Volcano, Alaska, 2003–2004. Bulletin of Volcanology 69:527–536. doi:10.1007/s00445-006-0088-z.

Pouclet A and Bram K (2021). Nyiragongo and Nyamuragira: a review of volcanic activity in the Kivu rift, western branch of the East African Rift System. Bulletin of Volcanology 83:10. doi:10.1007/s00445- 021-01435-6.

Richardson J. P, Waite G. P, and Palma J. L (2014). Varying seismic-acoustic properties of the fluctuating lava lake at Villarrica volcano, Chile. Journal of Geophysical Research: Solid Earth 119(7):5560–5573. doi:10.1002/2014JB011002.

Ripepe M, Harris A. J, and Carniel R (2002). Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. Journal of Volcanology and Geothermal Research 118(3-4):285–297. doi:10.1016/S0377-0273(02)00298-6.

Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, and Salerno G (2005). Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33(5):341–344. doi:10.1130/G21173.1.

Ripepe M, Sergio C, and Massimo D. S (2001). Time constrains for modeling source dynamics of volcanic explosions at Stromboli. Journal of Geophysical Research: Solid Earth 106(B5):8713–8727. doi:10.1029/2000JB900374.

Rivers M. L and Carmichael I. S (1987). Ultrasonic studies of silicate melts. Journal of Geophysical Research: Solid Earth 92(B9):9247–9270. doi:10.1029/JB092iB09p09247.

Ruiz M. C, Lees J. M, and Johnson J. B (2006). Source constraints of Tungurahua volcano explosion events. Bulletin of Volcanology 68:480–490. doi:10.1007/s00445-005-0023-8.

Saito G, Ishizuka O, Ishizuka Y, Hoshizumi H, and Miyagi I (2018). Petrological characteristics and volatile content of magma of the 1979, 1989, and 2014 eruptions of Nakadake, Aso volcano, Japan. Earth, Planets and Space 70:197. doi:10.1186/s40623-018-0970-x.

Salvatore V, Cigala V, Taddeucci J, Arciniega-Ceballos A, Fernández J. J. P, Alatorre-Ibargüengoitia M. A, Gaudin D, Palladino D. M, Kueppers U, and Scarlato P (2020). Gas-pyroclast motions in volcanic conduits during Strombolian eruptions, in light of shock tube experiments. Journal of Geophysical Research: Solid Earth 125(4):e2019JB019182. doi:10.1029/2019JB019182.

Sandanbata O, Obara K, Maeda T, Takagi R, and Satake K (2015). Sudden changes in the amplitude- frequency distribution of long-period tremors at Aso volcano, southwest Japan. Geophysical Research Letters 42(23):10256–10262. doi:10.1002/2015GL066443.

Sato E, Fukui K, and Shimbori T (2018). Aso volcano eruption on October 8, 2016, observed by weather radars. Earth, Planets and Space 70:105. doi:10.1186/s40623-018-0879-4.

Sciotto M, Cannata A, Gresta S, Privitera E, and Spina L (2013). Seismic and infrasound signals at Mt. Etna: Modeling the North-East crater conduit and its relation with the 2008–2009 eruption feeding sys- tem. Journal of Volcanology and Geothermal Research 254:53–68. doi:10.1016/j.jvolgeores.2012.12.024.

Shinohara H, Geshi N, Yokoo A, Ohkura T, and Terada A (2018). Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent. Earth, Planets and Space 70:46. doi:10.1186/s40623-018-0798-4.

Simons B. C, Cronin S, Eccles J, Jolly A, Garaebiti E, and Cevuard S (2020). Spatiotemporal variations in eruption style and magnitude at Yasur volcano, Vanuatu: part 2―extending Strombolian eruption classifications. Bulletin of Volcanology 82:70. doi:10.1007/s00445-020-01404-5.

Spina L, Cannata A, Privitera E, Vergniolle S, Ferlito C, Gresta S, Montalto P, and Sciotto M (2015). Insights into Mt. Etna’s shallow plumbing system from the analysis of infrasound signals, August 2007–December 2009. Pure and Applied Geophysics 172:473–490. doi:10.1007/s00024-014-0884-x.

Sudo Y and Kong L. S. L (2001). Three-dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan. Bulletin of Volcanology 63:326–344. doi:10.1007/s004450100145.

Taddeucci J, Scarlato P, Capponi A, Del Bello E, Cimarelli C, Palladino D. M, and Kueppers U (2012). High-speed imaging of Strombolian explosions: The ejection velocity of pyroclasts. Geophysical Re- search Letters 39(2):L02301. doi:10.1029/2011GL050404.

Takagi N, Kaneshima S, Ohkura T, Yamamoto M, and Kawakatsu H (2009). Long-term variation of the shallow tremor sources at Aso Volcano from 1999 to 2003. Journal of Volcanology and Geothermal Research 184(3-4):333–346. doi:10.1016/j.jvolgeores.2009.04.013.

Terada A, Hashimoto T, and Kagiyama T (2012). A water flow model of the active crater lake at Aso vol- cano, Japan: fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system. Bulletin of Volcanology 74:641–655. doi:10.1007/s00445-011-0550-4.

Terada A, Hashimoto T, Kagiyama T, and Sasaki H (2008). Precise remote-monitoring technique of water volume and temperature of a crater lake in Aso volcano, Japan: implications for a sensitive window of a volcanic hydrothermal system. Earth, Planets and Space 60:705–710. doi:10.1186/BF03353134.

Tsunematsu K, Ishii K, and Yokoo A (2019). Transport of ballistic projectiles during the 2015 Aso Strombolian eruptions. Earth, Planets and Space 71:49. doi:10.1186/s40623-019-1029-3.

Valade S, Ripepe M, Giuffrida G, Karume K, and Tedesco D (2018). Dynamics of Mount Nyiragongo lava lake inferred from thermal imaging and infrasound array. Earth and Planetary Science Letters 500:192–204. doi:10.1016/j.epsl.2018.08.004.

Vergniolle S and Bouche E (2016). Gas-driven lava lake fluctuations at Erta ’Ale volcano (Ethiopia) revealed by MODIS measurements. Bulletin of Volcanology 78:60. doi:10.1007/s00445-016-1047-y.

Watson L. M, Dunham E. M, and Johnson J. B (2019). Simulation and inversion of harmonic infra- sound from open-vent volcanoes using an efficient quasi-1D crater model. Journal of Volcanology and Geothermal Research 380:64–79. doi:10.1016/j.jvolgeores.2019.05.007.

Watson L. M, Johnson J. B, Sciotto M, and Cannata A (2020). Changes in crater geometry revealed by inversion of harmonic infrasound observations: 24 December 2018 eruption of Mount Etna, Italy. Geophysical Research Letters 47(19):e2020GL088077. doi:10.1029/2020GL088077.

Witsil A. J and Johnson J. B (2020). Analyzing continuous infrasound from Stromboli vol- cano, Italy using unsupervised machine learning. Computers & Geosciences 140:104494. doi:10.1016/j.cageo.2020.104494.

Yamamoto M, Kawakatsu H, Kaneshima S, Mori T, Tsutsui T, Sudo Y, and Morita Y (1999). Detection of a crack-like conduit beneath the active crater at Aso volcano Japan. Geophysical Research Letters 26(24):3677–3680. doi:10.1029/1999GL005395.

Yokoo A, Ishii K, Ohkura T, and Kim K (2019). Monochromatic infrasound waves observed during the 2014–2015 eruption of Aso volcano, Japan. Earth, Planets and Space 71:12. doi:10.1186/s40623-019- 0993-y.

Zobin V. M and Sudo Y (2017). Source properties of Strombolian explosions at Aso volcano, Japan, derived from seismic signals. Physics of the Earth and Planetary Interiors 268:1–10. doi:10.1016/j.pepi.2017.05.002.

靑木 成一, 本多 彪, 早水 逸雲 (1940). 昭和 8 年 2 月阿蘇火山の活動調査報告. 験震時報 11:133–163.

池辺 伸一郎 (1999). 阿蘇中岳における 1990 年以降の表面活動の推移. 熊本地学会誌 121:12–16.

池辺 伸一郎 (2008). 阿蘇火山, 中央火口丘群の歴史時代の噴火現象に関する研究. 鹿児島大学理工学研究科博士論文.

池辺 伸一郎, 渡辺 一徳, 宮縁 育夫 (2008). 阿蘇火山中岳 1988~1995 年活動期における噴火様式の変化. 火山 53(1):15–33. doi:10.18940/kazan.53.1_15.

奥平 有三, 安藤 秀行, 佐藤 宗武, 宮南 啓 (1995). 粉体層の音響特性に及ぼす粒径の影響―吸音特性と音速―.粉体工学会誌 32(5):311–318. doi:10.4164/sptj.32.311.

小野 晃司, 渡辺 一徳, 星住 英夫, 高田 英樹, 池辺 伸一郎 (1995). 阿蘇火山中岳の灰噴火とその噴出物. 火山 40(3):133–151. doi:10.18940/kazan.40.3_133.

風間 卓仁, 大倉 敬宏, 吉川 慎, 横尾 亮彦, 西島 潤 (2015). 阿蘇火山の火口底地形変化に伴う重力変化の見積もり. 日本火山学会 2015 年度秋季大会ポスター.

気象庁 (2013a). 阿蘇山の火山活動解説資料 (平成 25 年 3 月).気象庁 (2013b). 阿蘇山の火山活動解説資料 (平成 25 年 6 月).気象庁(2014a). 阿蘇山の火山活動解説資料 (平成 26 年 8 月).

気象庁 (2014b). 阿蘇山の火山活動解説資料 平成 26 年 11 月 25 日 19 時 10 分発表.気象庁 (2014c). 阿蘇山の火山活動解説資料 (平成 26 年 11 月).

気象庁 (2015a). 阿蘇山. 第 131 回火山噴火予知連絡会資料 (その 4).

気象庁 (2015b). 阿蘇山の火山活動解説資料 (平成 27 年 5 月).

気象庁 (2015c). 阿蘇山. 第 132 回火山噴火予知連絡会資料 (その 5 の 2).

京都大学 (2015a). 本堂観測坑道で観測された地殻変動と阿蘇山での降水量. 第 131 回火山噴火予知連絡会資料 (その 4).

京都大学 (2015b). GPS 観測による基線長変化 (2004 年 1 月 1 日から 2015 年 5 月 16 日). 第 132 回火山噴火予知連絡会資料 (その 5 の 2).

熊本大学教育学部 (2015). 阿蘇火山中岳における 2015 年 5 月 3 日噴出物に関する調査速報. 第 132 回火山噴火予知連絡会資料 (その 5 の 2).

河野義禮 (1934). 昭和七八年の阿蘇火山活動概況. 岩石礦物礦床學 11(6):274–282. doi:10.2465/ganko1929.11.274.

国土地理院 (2015a). 阿蘇山の SAR 干渉解析結果について. 第 131 回火山噴火予知連絡会資料 (その 4).

国土地理院 (2015b). 阿蘇山の SAR 干渉解析結果について. 第 132 回火山噴火予知連絡会資料 (その 5 の 2).

佐々 憲三 (1939). 火山爆發活動と火山微動, 地震との關係. 地球物理 3(3):215–226.

産業技術総合研究所 (2015). 2014 年 11 月 26-27 日噴火マグマの岩石学的特徴と揮発性成分濃度. 第 131 回火山噴火予知連絡会資料 (その 4).

須藤 靖明 (2012). 最近の阿蘇火山中岳の火山活動について―開放型火山―. 月刊地球 34(12):722–731.

筒井 智樹, 須藤 靖明, 森 健彦, 勝俣 啓, 田中 聡, 及川 純, 戸松 稔貴, 松尾䞞道, 松島 健, 宮町 宏樹, 西 潔,藤原 善明, 平松 秀行 (2003). 阿蘇火山中央火口丘山体の 3 次元地震波速度構造. 火山 48(3):293–307. doi:doi.org/10.18940/kazan.48.3_293.

防災科学技術研究所 (2015). 阿蘇山の火山活動について. 第 132 回火山噴火予知連絡会資料 (その 5 の 2).

宮縁 育夫, 飯塚 義之, 遠入 楓大, 大倉 敬宏 (2021). 阿蘇火山中岳第 1 火口における 2019~2020 年マグマ噴火の先駆活動―2019 年 5 月 3 日~5 日噴火を含む火山活動の特徴―. 火山 66(3):157–169. doi:10.18940/kazan.66.3_157.

横尾 亮彦・宮縁 育夫 (2015). 2014 年 11 月から始まった阿蘇火山中岳第一火口の噴火活動. 火山 60(2):275–278. doi:10.18940/kazan.60.2_275.

吉川 慎・須藤 靖明 (2004). 阿蘇火山中岳第 1 火口の温度変化と火山活動. 京都大学防災研究所年報 47(B):803–807.

渡辺 一徳 (1991). 阿蘇火山中岳の火山活動. 熊本地学会誌 98:2–13.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る