リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer

Kasahara, Keiko 京都大学 DOI:10.14989/doctor.r13561

2023.05.23

概要

Purpose: The pathogenesis of cancers depends on the molecular background of
each individual patient. Therefore, verifying as many biomarkers as possible and
clarifying their relationships with each disease status would be very valuable. We
performed a large-­scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance.
Experimental design: Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients
with CRC in cohort 2 for the large-­scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann–­Whitney-­Wilcoxon test and random
forest model were applied in cohort 1 to select promising markers. Consensus
clustering was applied to classify patients with CRC in cohort 2. The Kaplan–­
Meier method and Cox regression analysis were performed to identify potential
molecular factors contributing to the overall survival (OS) of patients.
Results: In the analysis of cohort 1, 99 proteins were associated with CRC. ...

この論文で使われている画像

参考文献

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:

GLOBOCAN estimates of incidence and mortality worldwide for

36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-­249.

2. Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC

cancer staging manual: continuing to build a bridge from a

population-­based to a more "personalized" approach to cancer

staging. CA Cancer J Clin. 2017;67:93-­99.

3. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350-­1356.

4. Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT. Cancer

diagnosis: from tumor to liquid biopsy and beyond. Lab Chip.

2018;19:11-­34.

5. Hoshino A, Kim HS, Bojmar L, et al. Extracellular vesicle

and particle biomarkers define multiple human cancers. Cell.

2020;182:1044-­1061.e18.

6. van Niel G, D'Angelo G, Raposo G. Shedding light on the

cell biology of extracellular vesicles. Nat Rev Mol Cell Biol.

2018;19:213-­228.

7. Masuda T, Mori A, Ito S, Ohtsuki S. Quantitative and targeted

proteomics-­based identification and validation of drug efficacy

biomarkers. Drug Metab Pharmacokinet. 2021;36:100361.

8. Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis

of human colon cancer reveals new therapeutic opportunities.

Cell. 2019;177(1035–­1049):e1019.

9. Picotti P, Bodenmiller B, Aebersold R. Proteomics meets the scientific method. Nat Methods. 2013;10:24-­27.

10. Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution

strategies for absolute quantitative proteomics. J Proteomics.

2009;72:740-­749.

11. Shiromizu T, Kume H, Ishida M, et al. Quantitation of putative

colorectal cancer biomarker candidates in serum extracellular

vesicles by targeted proteomics. Sci Rep. 2017;7:12782.

12. Kume H, Muraoka S, Kuga T, et al. Discovery of colorectal

cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol Cell

Proteomics. 2014;13:1471-­1484.

13. Ishizaki J, Takemori A, Suemori K, et al. Targeted proteomics

reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-­associated

vasculitis. Arthritis Res Ther. 2017;19:218.

14. Kim Y, Jeon J, Mejia S, et al. Targeted proteomics identifies

liquid-­biopsy signatures for extracapsular prostate cancer. Nat

Commun. 2016;7:11906.

15. You J, Kao A, Dillon R, et al. A large-­scale and robust dynamic

MRM study of colorectal cancer biomarkers. J Proteomics.

2018;187:80-­92.

16. Chen Y, Xie Y, Xu L, et al. Protein content and functional characteristics of serum-­purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer.

2017;140:900-­913.

20457634, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/cam4.5442 by Cochrane Japan, Wiley Online Library on [17/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

10 17. Narumi R, Shimizu Y, Ukai-­

Tadenuma M, et al. Mass

spectrometry-­based absolute quantification reveals rhythmic

variation of mouse circadian clock proteins. Proc Natl Acad Sci

U S A. 2016;113:E3461-­E3467.

18. Narumi R, Masuda K, Tomonaga T, Adachi J, Ueda HR,

Shimizu Y. Cell-­free synthesis of stable isotope-­labeled internal standards for targeted quantitative proteomics. Synth Syst

Biotechnol. 2018;3:97-­104.

19. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta

2012: database of exosomal proteins, RNA and lipids. Nucleic

Acids Res. 2012;40:D1241-­D1244.

20. Kusebauch U, Campbell DS, Deutsch EW, et al. Human

SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016;166:766-­778.

21. Shimizu Y, Inoue A, Tomari Y, et al. Cell-­free translation reconstituted with purified components. Nat Biotechnol. 2001;19:751-­755.

22. Hayes DN, Monti S, Parmigiani G, et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol.

2006;24:5079-­5090.

23. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic

analysis identifies clinically relevant subtypes of glioblastoma

characterized by abnormalities in PDGFRA, IDH1, EGFR, and

NF1. Cancer Cell. 2010;17:98-­110.

24. Wei R, Wang J, Su M, et al. Missing value imputation approach for

mass spectrometry-­based metabolomics data. Sci Rep. 2018;8:663.

25. Senbabaoglu Y, Michailidis G, Li JZ. Critical limitations of consensus clustering in class discovery. Sci Rep. 2014;4:6207.

26. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer

statistics, 2020. CA Cancer J Clin. 2020;70:145-­164.

27. Koncina E, Haan S, Rauh S, Letellier E. Prognostic and predictive molecular biomarkers for colorectal cancer: updates and

challenges. Cancers (Basel). 2020;12:319.

28. Fu Y, Lin L, Xia L. MiR-­107 function as a tumor suppressor

gene in colorectal cancer by targeting transferrin receptor 1.

Cell Mol Biol Lett. 2019;24:31.

29. Perego M, Tyurin VA, Tyurina YY, et al. Reactivation of dormant

tumor cells by modified lipids derived from stress-­activated

neutrophils. Sci Transl Med. 2020;12:eabb5817.

30. Kajino-­Sakamoto R, Fujishita T, Taketo MM, Aoki M. Synthetic

lethality between MyD88 loss and mutations in Wnt/beta-­

catenin pathway in intestinal tumor epithelial cells. Oncogene.

2021;40:408-­420.

31. Kasprzak A, Adamek A. Insulin-­like growth factor 2 (IGF2)

signaling in colorectal cancer-­from basic research to potential

clinical applications. Int J Mol Sci. 2019;20:4915.

32. Wu Q, Wang D, Zhang Z, et al. DEFB4A is a potential prognostic biomarker for colorectal cancer. Oncol Lett. 2020;20:114.

33. Ligresti G, Aplin AC, Dunn BE, Morishita A, Nicosia RF. The

acute phase reactant orosomucoid-­1 is a bimodal regulator of

angiogenesis with time-­and context-­dependent inhibitory and

stimulatory properties. PLoS One. 2012;7:e41387.

34. Duche JC, Urien S, Simon N, Malaurie E, Monnet I, Barre J.

Expression of the genetic variants of human alpha-­1-­acid glycoprotein in cancer. Clin Biochem. 2000;33:197-­202.

35. Ayyub A, Saleem M, Fatima I, Tariq A, Hashmi N,

Musharraf SG. Glycosylated Alpha-­1-­acid glycoprotein 1 as

11

a potential lung cancer serum biomarker. Int J Biochem Cell

Biol. 2016;70:68-­75.

36. Li F, Yu Z, Chen P, et al. The increased excretion of urinary

orosomucoid 1 as a useful biomarker for bladder cancer. Am J

Cancer Res. 2016;6:331-­340.

37. Chantaraamporn J, Champattanachai V, Khongmanee A, et al.

Glycoproteomic analysis reveals aberrant expression of complement C9 and fibronectin in the plasma of patients with colorectal cancer. Proteomes. 2020;8:26.

38. Saraswat M, Joenvaara S, Musante L, Peltoniemi H, Holthofer

H, Renkonen R. N-­linked (N-­) glycoproteomics of urinary exosomes. [corrected]. Mol Cell Proteomics. 2015;14:263-­276.

39. Repetto O, Lovisa F, Elia C, et al. Proteomic exploration of

plasma exosomes and other small extracellular vesicles in pediatric Hodgkin lymphoma: a potential source of biomarkers for

relapse occurrence. Diagnostics (Basel). 2021;11:917.

40. Laine E, Couderc R, Roch-­Arveiller M, Vasson MP, Giroud JP,

Raichvarg D. Modulation of human polymorphonuclear neutrophil functions by alpha 1-­acid glycoprotein. Inflammation.

1990;14:1-­9.

41. Elg SA, Mayer AR, Carson LF, Twiggs LB, Hill RB,

Ramakrishnan S. Alpha-­1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer.

1997;80:1448-­1456.

42. Snyder S, Coodley EL. Inhibition of platelet aggregation by

alpha1-­acid glycoprotein. Arch Intern Med. 1976;136:778-­781.

43. Muchitsch EM, Teschner W, Linnau Y, Pichler L. In vivo effect

of alpha 1-­acid glycoprotein on experimentally enhanced capillary permeability in Guinea-­pig skin. Arch Int Pharmacodyn

Ther. 1996;331:313-­321.

44. Xie F, Zhou X, Fang M, et al. Extracellular vesicles in cancer

immune microenvironment and cancer immunotherapy. Adv

Sci (Weinh). 2019;6:1901779.

45. Sun Y, Wang F, Zhou Z, et al. Urinary proteomics identifying

novel biomarkers for the diagnosis of adult-­onset Still's disease.

Front Immunol. 2020;11:2112.

46. Erozenci LA, Bottger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan-­) cancer biomarkers: insights from the

proteome. FEBS Lett. 2019;593:1580-­1597.

SUPPORTING INFORMATION

Additional supporting information can be found online in

the Supporting Information section at the end of this article.

How to cite this article: Kasahara K, Narumi R,

Nagayama S, et al. A large-­scale targeted

proteomics of plasma extracellular vesicles shows

utility for prognosis prediction subtyping in

colorectal cancer. Cancer Med. 2022;00:1-11. doi:

10.1002/cam4.5442

20457634, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/cam4.5442 by Cochrane Japan, Wiley Online Library on [17/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

KASAHARA et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る