リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「哺乳類と鳥類における雑種不適合性の分子細胞生物学的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

哺乳類と鳥類における雑種不適合性の分子細胞生物学的研究

石下, 聡 名古屋大学

2021.08.18

概要

人類は、古くから様々な家畜の種間・属間交配を行い、雑種強勢(ヘテロシス)効果を農業や生活の向上のために利用してきた。異なる種や属の間の雑種では、多くの場合、発育不全や不妊などの不適合性が生じる。この雑種不適合性は、種の分化や維持のための生殖隔離機構の一つあり、両親由来の遺伝子の不適合によって生じると考えられている。雑種不適合性の分子基盤の解明は種分化の過程を理解する上で大きな意味を持つと考えられるが、高等脊椎動物における雑種不適合性の分子基盤は理解が進んでいない。哺乳類と鳥類はともに有羊膜類であり発生過程は類似しているが、性決定システムやゲノム刷り込みの有無などの相違もある。どちらの雑種でもホールデンの法則に従って、雑種不適合性は異型接合型の性でより重篤になる。哺乳類では実験用マウスが雑種不適合性の分子生物学的研究によく用いられている。一方、鳥類では、哺乳類と比べて雑種不適合性の分子基盤の研究が進んでいない。そこで、本研究では、雑種不適合性とホールデンの法則の分子基盤を解明することを目的として、 Phodopus 属ドワーフハムスターに属するキャンベルハムスター( P. campbelli)とジャンガリアンハムスター( P. sungorus) の種間 F1 雑種の雄性不妊と、キジ科のニワトリ( Gallus gallus domesticus)とニホンウズラ(以後、ウズラ)( Coturnix japonica)の属間 F1 雑種の胚性致死に着目し、Phodopus 属雑種の精巣と精子、およびニワトリ×ウズラ雑種の染色体と胚発生を分子、細胞、組織レベルで解析することで、それらの表現型を引き起こす要因を明らかにした。そして、本研究の結果とマウスや他の鳥類の遺伝学、生殖生物学、およびゲノム科学研究の最近の知見に基づいて、雑種不適合性の分子基盤について考察した。

1.P. campbelli×P. sungorus 種間雑種の減数第一分裂時における XY 性染色体の対合異常と精子の形態異常
P. campbelli の雌と P. sungorus の雄の交配によって得られる雑種雄にみられる配偶子形成不全の原因を解明することを目的として、精巣と精子を組織学的・分子細胞遺伝学的に解析することで、( 1)雑種の精巣は親種と比べて小さい、( 2)雑種で一次精母細胞の蓄積と一次精母細胞様細胞のアポトーシスが高頻度に起こる、( 3)雑種の精母細胞では、パキテン期様ステージにおける XY 性染色体の不接合と第一分裂中期 (MI)における XY 性染色体の分離が高頻度に起こる、( 4)雑種の精母細胞では、パキテン期様および MI の各ステージで一価の常染色体は観察されないが、パキテン期様ステージで常染色体と X 染色体または Y 染色体間の誤接合、常染色体間のインターロッキングや部分的接合、常染色体クロマチン上の二重鎖 DNA 切断マーカーであるリン酸化 H2AFX( γ-H2AFX)の残存がみられる、( 5) 変性した MI 様の核が高頻度に観察される、( 6)雑種の精巣上体精子のほとんどは頭部形態の異常を呈することを明らかにした。これらの結果から、Phodopus 属ハムスターの雑種では、XY 性染色体およ び常染色体における相同染色体対合や相同組換え修復の異常によって、チェックポイント機構や非シナプス領域での転写抑制機構が働くことによって、減数第一分裂の進行が阻害されることが示唆された。さらに、XY 性染色体間で対合異常が生じやすく、それによって減数分裂の進行が高頻度に阻害されることが、雄性不妊の主たる要因であることが示唆された。また、形成される精子のほとんどが形態異常をともなうことから、精子の受精能が低下している可能性が示唆された。雑種では、一方で、減数第一分裂の異常を引き起こす因子以外にも不適合性因子が存在する可能性が考えられた。

2.ニワトリとニホンウズラの F1 雑種胚の発生過程と致死表現型
ニワトリ雄とウズラ雌の人工授精によって得られる属間 F1 雑種胚の発生過程と致死表現型を明らかにすることを目的として、雑種胚の発生を経時的に観察し、性比を解析することで、( 1) ニワトリ×ウズラ雑種の胚発生は初期段階(孵卵 7 日まで)において、親種と比べてわずかに遅延する、( 2)雑種胚の生存率は胚盤葉期から循環前期にかけて著しく減少し、その後の発生段階でも徐々に減少する、( 3)孵卵 10 日以降も雌の雑種胚は観察されるが、雑種の生存胚の性比は孵化 10 日から雄に偏る、( 4)雑種胚では重度の形態異常が孵卵開始後の多様なステージで高頻度に観察されることを明らかにした。これらの結果から、雑種の胚発生が様々なステージで停止することが示唆された。また、発生初期には胚性致死の性比に偏りは見られないが、後期には雌で有意に胚性致死が起きることが示唆された。そして、雑種では、胚の発生分化に関わる様々な分子経路に異常が生じていることが示唆された。また、性腺の性分化が雌に偏った胚性致死と関係する可能性が考えられた。

3.ニワトリとニホンウズラの F1 雑種の胚盤葉期胚における遺伝子発現調節の異常
第二章で明らかになったニワトリ×ウズラ雑種の前原条期での胚性致死の原因解明を目的として、ニワトリの染色体特異的 DNA プローブと、ニワトリとウズラから単離したマイクロ染色体特異的反復 DNA 配列を用いた分子細胞遺伝学的解析によって雑種胚の染色体異常を調べた。また、胚盤葉期初期から前原条期への発生の進行にともなう遺伝子発現量の変化(増加、下降、または変化なし)をトランスクリプトーム解析によって調べ、親種と雑種で比較することで、( 1)雑種胚の細胞には親種由来の染色体が半分ずつ含まれており、染色体の数的異常はほとんどみられない、( 2) 両親種で胚盤葉期から前原条期に発生が進行するにつれて発現量が増加する遺伝子の一部が、雑種胚ではニワトリ由来とウズラ由来の対立遺伝子の両方で発現量が増加しない、( 3)翻訳や細胞増殖など様々な生物学的プロセスに関わる遺伝子の発現調節に異常が生じている、( 4)誤った発現調節を受ける遺伝子の中には、発生初期の原条形成や原腸陥入などに関わる遺伝子が含まれることを明らかにした。これらの結果から、ニワトリとウズラの雑種胚の致死の原因は、染色体の分離異常によって引き起こされる染色体の数的異常ではなく、様々な生物学的プロセスを制御する遺伝子の発現調節の異常である可能性が示唆された。以上の結果から、雑種では、遺伝子発現制御の異常による翻訳や細胞増殖などの生物学的プロセスの不全によって、細胞の移動、増殖、および分化が前原条期で異常になり、その結果、発生が停止することが示唆された。

以上のように、本研究では、Phodopus 属ハムスター雑種の第一減数分裂における相同染色体対合と相同組換え修復の異常と精子の形態異常を明らかにした。また、ニワトリ×ウズラ雑種胚において発生過程の様々なステージで発生停止が起こること、雌に偏った致死がこれまで考えられていた時期よりも後期の発生ステージで起こること、染色体の分離異常によって生じる染色体の欠失や重複などの染色体の数的異常はほとんど起こらないこと、そして、前原条期における様々な生物学的プロセスに関わる遺伝子の発現異常が起こることを明らかにした。本研究で得られた知見は、哺乳類と鳥類における雑種不適合性やホールデンの法則の分子基盤を解明する上で重要な手掛かりとなる。よって、本研究は、有羊膜類の雑種不適合性の分子基盤の解明に大きく貢献しうるものと考えられる。

この論文で使われている画像

参考文献

Abbott, U.K., & Craig, R.M. (1960). Observations on hatching time in three avian species. Poult. Sci. 39, 827–830.

Abbott, R., Albach, D., Ansell, S., et al. (2013). Hybridization and speciation. J. Evol. Biol. 26, 229–246.

Ainsworth, S.J., Stanley, R.L., & Evans, D.J.R. (2010). Developmental stages of the Japanese quail. J. Anat. 216, 3–15.

Anders, S., Pyl, P.T., & Huber, W. (2015). HTSeq—a Python framework to work with high- throughput sequencing data. Bioinformatics 31, 166–169.

Anzai, T., Yamagata, T., & Uosaki, H. (2020). Comparative transcriptome landscape of mouse and human hearts. Front. Cell Dev. Biol. 8.

Arrieta, R.S., Lijtmaer, D.A., & Tubaro, P.L. (2013). Evolution of postzygotic reproductive isolation in galliform birds: analysis of first and second hybrid generations and backcrosses. Biol.J. Linn. Soc. Lond. 110, 528–542.

Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.

Asmundson, V.S., & Lorenz, F.W. (1955). Pheasant-turkey hybrids. Science 121, 307–308.

Asmundson, V.S., & Lorenz, F.W. (1957). Hybrids of ring-necked pheasants, turkeys, and domestic fowl. Poult. Sci. 36, 1323–1334.

Bachtrog, D., Jensen, J.D., & Zhang, Z. (2009). Accelerated adaptive evolution on a newly formed X chromosome. PLoS Biol. 7, e82.

Baines, J.F., & Harr, B. (2007). Reduced X-linked diversity in derived populations of house mice.Genetics 175, 1911–1921.

Baines, J.F., Sawyer, S.A., Hartl, D.L., & Parsch, J. (2008). Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol. 25, 1639–1650.

Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker, E.U., Cresko, W.A., & Johnson, E.A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376.

Bammi, R.K., Shoffner, R.N., & Haiden, G.J. (1966). Sex ratios and karyotype in the chicken- coturnix quail hybrid. Can. J. Genet. Cytol. 8, 533–536.

Barchi, M., Mahadevaiah, S., Di Giacomo, M., Baudat, F., de Rooij, D.G., Burgoyne, P.S., Jasin, M., & Keeney, S. (2005). Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell. Biol.25, 7203–7215.

Bennett, M.D., Finch, R.A., & Barclay, I.R. (1976). The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54, 175–200.

Bertocchini, F., Skromne, I., Wolpert, L., & Stern, C.D. (2004). Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131, 3381–3390.

Bhattacharyya, T., Gregorova, S., Mihola, O., Anger, M., Sebestova, J., Denny, P., Simecek, P., & Forejt, J. (2013). Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl. Acad. Sci. U.S.A. 110, E468-477.

Bigger, T.R., & Savage, J.R. (1976). Location of nucleolar organizing regions on the chromosomes of the Syrian hamster (Mesocricetus auratus) and the Djungarian hamster (Phodopus sungorus). Cytogenet. Cell Genet. 16, 495–504.

Birkhead, T.R., & Brillard, J.-P. (2007). Reproductive isolation in birds: postcopulatory prezygotic barriers. Trends Ecol. Evol. 22, 266–272.

Bloom, S.E., & Hsu, T.C. (1975). Differential fluorescence of sister chromatids in chicken embryos exposed to 5-bromodeoxyuridine. Chromosoma 51, 261–267.

Boateng, K.A., Bellani, M.A., Gregoretti, I.V., Pratto, F., & Camerini-Otero, R.D. (2013). Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev. Cell 24, 196– 205.

Bolger, A.M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

Bollag, R.J., Watdman, A.S., & Liskay, R.M. (1989). Homologous recombination in mammalian cells. Annu. Rev. Genet. 23, 199–225.

Borodin, P.M., Barreiros-Gomez, S.C., Zhelezova, A.I., Bonvicino, C.R., & D’Andrea, P.S. (2006). Reproductive isolation due to the genetic incompatibilities between Thrichomys pachyurus and two subspecies of Thrichomys apereoides (Rodentia, Echimyidae). Genome 49, 159–167.

Breeuwer, J.A., & Werren, J.H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346, 558–560.

Brekke, T.D., & Good, J.M. (2014). Parent-of-origin growth effects and the evolution of hybrid inviability in dwarf hamsters. Evolution 68, 3134–3148.

Brekke, T.D., Henry, L.A., & Good, J.M. (2016). Genomic imprinting, disrupted placental expression, and speciation. Evolution 70, 2690–2703.

Bressan, M., & Mikawa, T. (2015). Avians as a model system of vascular development. Methods Mol. Biol. 1214, 225–242.

Burgoyne, P.S., Mahadevaiah, S.K., & Turner, J.M.A. (2009). The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 10, 207–216.

Campbell, P., Good, J.M., & Nachman, M.W. (2013). Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice. Genetics 193, 819–828.

Chandley, A.C., Jones, R.C., Dott, H.M., Allen, W.R., & Short, R.V. (1974). Meiosis in interspecific equine hybrids. I. The male mule (Equus asinus × E. caballus) and hinny (E. caballus× E. asinus). Cytogenet. Cell Genet. 13, 330–341.

Chapman, S.C., Schubert, F.R., Schoenwolf, G.C., & Lumsden, A. (2002). Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos. Dev. Biol. 245, 187–199.

Cink, C.L. (1975). Egg fertility and hatchability in Colinus quail and their hybrids. Auk 92, 803– 805.

Close, R.L., Bell, J.N., Dollin, A.E., & Harding, H.R. (1996). Spermatogenesis and synaptonemal complexes of hybrid Petrogale (Marsupialia). J. Hered. 87, 96–107.

Cobb, J., Cargile, B., & Handel, M.A. (1999). Acquisition of competence to condense metaphase I chromosomes during spermatogenesis. Dev. Biol. 205, 49–64.

Cohen, P.E., Pollack, S.E., & Pollard, J.W. (2006). Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocrine Rev. 27, 398–426.

Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., & Robertson, E.J. (1994). A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928.

Coyne, J.A., & Orr, H.A. (1989). Patterns of Speciation in Drosophila. Evolution 43, 362–381.

Coyne, J.A., & Orr, H.A. (1997). “Patterns of speciation in Drosophila” revisited. Evolution 51, 295–303.

Coyne, J. A., & Orr, H. A. (2004) Speciation. Sinauer Associates, Inc., Sunderland, MA.

Dalloul, R.A., Long, J.A., Zimin, A.V., et al. (2010). Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 8.

Dean, R., Harrison, P.W., Wright, A.E., Zimmer, F., & Mank, J.E. (2015). Positive selection underlies faster-Z evolution of gene expression in birds. Mol. Biol. Evol. 32, 2646–2656.

Dobzhansky, T. (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21, 113–135.

Ellegren, H. (2009). Genomic evidence for a large-Z effect. Proc. Biol. Sci. 276, 361–366.

Ellegren, H. (2011). Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat. Rev. Genet. 12, 157–166.

Ellison, J.W., Li, X., Francke, U., & Shapiro, L.J. (1996). Rapid evolution of human pseudoautosomal genes and their mouse homologs. Mamm. Genome 7, 25–30.

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., & Mitchell, S.E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379.

Eyal-Giladi, H., & Kochav, S. (1976). From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49, 321–337.

Finch, R.A. (1983). Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88, 386–393.

Fitzpatrick, B.M. (2004). Rates of evolution of hybrid inviability in birds and mammals. Evolution58, 1865–1870.

Frésard, L., Leroux, S., Servin, B., et al. (2014). Transcriptome-wide investigation of genomic imprinting in chicken. Nucl. Acids Res. 42, 3768–3782.

Fridolfsson, A.-K., & Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116–121.

Fujiwara, A., Abe, S., Yamaha, E., Yamazaki, F., & Yoshida, M.C. (1997). Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106, 44–52.

Gavrieli, Y., Sherman, Y., & Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.The Gene Ontology Consortium (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338.

Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Brüss, C., Kumlehn, J., Matzk, F., & Houben, A. (2005). Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17, 2431–2438.

Gerton, J.L., & Hawley, R.S. (2005). Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487.

Gibeaux, R., Acker, R., Kitaoka, M., Georgiou, G., van Kruijsbergen, I., Ford, B., Marcotte, E.M., Nomura, D.K., Kwon, T., Veenstra, G.J.C., & Heald, R. (2018). Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553, 337–341.

Good, J.M., & Nachman, M.W. (2005). Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis. Mol. Biol. Evol. 22, 1044– 1052.

Good, J.M., Dean, M.D., & Nachman, M.W. (2008). A complex genetic basis to X-linked hybrid male sterility between two species of house mice. Genetics 179, 2213–2228.

Good, J.M., Giger, T., Dean, M.D., & Nachman, M.W. (2010). Widespread over-expression of the X chromosome in sterile F1 hybrid mice. PLoS Genet. 6, e1001148.

Grant, P.R., & Grant, R. (1992). Hybridization of bird species. Science 256, 193.

Gray, A. P. Bird Hybrids, A Check-list with Bibliography. (Commonwealth Agricultural Bureaux, Farnham, U.K., 1958).

Graves, J.A., & Barbieri, I. (1992). Chromosome segregation from cell hybrids. VII. Reverse segregation from karyoplast hybrids suggests control by cytoplasmic factors. Genome 35, 537– 540.

Griffin, D.K., Haberman, F., Masabanda, J., O’Brien, P., Bagga, M., Sazanov, A., Smith, J., Burt, D.W., Ferguson-Smith, M., & Wienberg, J. (1999). Micro- and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet. Cell Genet. 87, 278–281.

Griffin, J.N., Sondalle, S.B., Robson, A., Mis, E.K., Griffin, G., Kulkarni, S.S., Deniz, E., Baserga, S.J., & Khokha, M.K. (2018). RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 145.

Haldane, J.B.S. (1922). Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109.

Hale, D.W., Washburn, L.L., & Eicher, E.M. (1993). Meiotic abnormalities in hybrid mice of the C57BL/6J × Mus spretus cross suggest a cytogenetic basis for Haldane’s rule of hybrid sterility. Cytogenet. Cell Genet. 63, 221–234.

Haley, L.E., Abplanalp, H., & Enya, K. (1966). Selection for increased fertility of female quail when mated to male chickens. Evolution 20, 72–81.

Hamburger, V., & Hamilton, H.L. (1992). A series of normal stages in the development of the chick embryo. Dev. Dyn. 195, 231–272.

Hamer, G., Novak, I., Kouznetsova, A., & Höög, C. (2008). Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology 69, 333–339.

Handel, M.A. (2004). The XY body: a specialized meiotic chromatin domain. Exp. Cell Res. 296, 57–63.

Handel, M.A., & Hunt, P.A. (1992). Sex-chromosome pairing and activity during mammalian meiosis. Bioessays 14, 817–822.

Hara, H., Hanzawa, K., Yoshida, Y., & Watanabe, S. (2013). Characterization of a chicken x peahen intergeneric hybrid produced under natural mating. Hayvansal Üretim 54.

Hardy, K.M., Garriock, R.J., Yatskievych, T.A., D’Agostino, S.L., Antin, P.B., & Krieg, P.A. (2008). Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev. Biol. 320, 391–401.

Hawksworth, D. British Poultry Standards. 4th edn. (Butterworth, London, U.K., 1982).

Helm-Bychowski, K.M., & Wilson, A.C. (1986). Rates of nuclear DNA evolution in pheasant- like birds: evidence from restriction maps. Proc. Natl. Acad. Sci. U.S.A. 83, 688–692.

Hanebrink, E. L. (1976) Characteristics and behavior of guineafowl and domesticated chicken hybrids. Ark. Acad. Sci. 30,44–46Homolka, D., Ivanek, R., Capkova, J., Jansa, P., & Forejt, J. (2007). Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res. 17, 1431–1437.

Hunt, P.A., & Hassold, T.J. (2002). Sex matters in meiosis. Science 296, 2181–2183.

Hvilsom, C., Qian, Y., Bataillon, T., et al. (2012). Extensive X-linked adaptive evolution in central chimpanzees. Proc. Natl. Acad. Sci. U.S.A. 109, 2054–2059.

Imai, H.T., Matsuda, Y., Shiroishi, T., & Moriwaki, K. (1981). High frequency fo X-Y chromosome dissociation in primary spermatocytes of F1 hybrids between Japanese wild mice (Mus musculus molossinus) and inbred laboratory mice. Cytogenet. Cell Genet. 29, 166–175.

Ishikawa, R., & Kinoshita, T. (2009). Epigenetic programming: The challenge to species hybridization. Mol. Plant 2, 589–599.

Ishishita, S., Matsuda, Y., & Kitada, K. (2014). Genetic evidence suggests that Spata22 is required for the maintenance of Rad51 foci in mammalian meiosis. Sci Rep 4, 6148.

Izpisúa-Belmonte, J.C., De Robertis, E.M., Storey, K.G., & Stern, C.D. (1993). The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659.

Johnson, N.A. (2010). Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet. 26, 317–325.

Johnson, N.A., & Lachance, J. (2012). The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann. N.Y. Acad. Sci. 1256, E1–E22.

Kawahara-Miki, R., Sano, S., Nunome, M., Shimmura, T., Kuwayama, T., Takahashi, S., Kawashima, T., Matsuda, Y., Yoshimura, T., & Kono, T. (2013). Next-generation sequencing reveals genomic features in the Japanese quail. Genomics 101, 345–353.

Kayang, B.B., Fillon, V., Inoue-Murayama, M., Miwa, M., Leroux, S., Fève, K., Monvoisin, J.- L., Pitel, F., Vignoles, M., Mouilhayrat, C., Beaumont, C., Ito, S., Minvielle, F., & Vignal, A.(2006). Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics 7, 101.

Kayserili, M.A., Gerrard, D.T., Tomancak, P., & Kalinka, A.T. (2012). An excess of gene expression divergence on the X chromosome in Drosophila embryos: implications for the faster- X hypothesis. PLoS Genet. 8, e1003200.

Khaitovich, P., Hellmann, I., Enard, W., Nowick, K., Leinweber, M., Franz, H., Weiss, G., Lachmann, M., & Pääbo, S. (2005). Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854.

Khosravinia, H., Murthy, H.N.N., & Kumar, K.P. (2005). Scope for interspecific hybridization of chicken and quail. J. Poult. Sci. 42, 363–368.

Kim, D., Paggi, J.M., Park, C., Bennett, C., & Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915.

Kipling, D., Wilson, H.E., Thomson, E.J., Lee, M., Perry, J., Palmer, S., Ashworth, A., & Cooke,H.J. (1996). Structural variation of the pseudoautosomal region between and within inbred mouse strains. Proc. Natl. Acad. Sci. U.S.A. 93, 171–175.

Kispert, A., Ortner, H., Cooke, J., & Herrmann, B.G. (1995). The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev. Biol. 168, 406–415.

Kitano, J., Ross, J.A., Mori, S., Kume, M., Jones, F.C., Chan, Y.F., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M., Kingsley, D.M., & Peichel, C.L. (2009). A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083.

Knezevic, V., De Santo, R., & Mackem, S. (1997). Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Development 124, 411–419.

Kogo, H., Tsutsumi, M., Inagaki, H., Ohye, T., Kiyonari, H., & Kurahashi, H. (2012). HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells 17, 897–912.

Kousathanas, A., Halligan, D.L., & Keightley, P.D. (2014). Faster-X adaptive protein evolution in house mice. Genetics 196, 1131–1143.

Kurahashi, H., Kogo, H., Tsutsumi, M., Inagaki, H., & Ohye, T. (2012). Failure of homologous synapsis and sex-specific reproduction problems. Front. Genet. 3, 112.

Langley, C.H., Stevens, K., Cardeno, C., et al. (2012). Genomic variation in natural populations of Drosophila melanogaster. Genetics 192, 533–598.

Laurie, C.C. (1997). The weaker sex is heterogametic: 75 years of Haldane’s rule. Genetics 147, 937–951.

Levin, M. (2007). Gap junctional communication in morphogenesis. Prog. Biophys. Mol. Biol.94, 186–206.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

Lijtmaer, D.A., Mahler, B., & Tubaro, P.L. (2003). Hybridization and postzygotic isolation patterns in pigeons and doves. Evolution 57, 1411–1418.

Llopart, A. (2012). The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29, 3873–3886.

Llopart, A. (2015). Parallel Faster-X Evolution of Gene Expression and Protein Sequences in Drosophila : Beyond Differences in Expression Properties and Protein Interactions. PLoS ONE 10, e0116829.

Love, M.I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lu, J., & Wu, C.-I. (2005). Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc. Natl. Acad. Sci. U.S.A. 102, 4063– 4067.

Mahadevaiah, S.K., Turner, J.M., Baudat, F., Rogakou, E.P., de Boer, P., Blanco-Rodríguez, J., Jasin, M., Keeney, S., Bonner, W.M., & Burgoyne, P.S. (2001). Recombinational DNA double- strand breaks in mice precede synapsis. Nat. Genet. 27, 271–276.

Maheshwari, S., & Barbash, D.A. (2011). The genetics of hybrid incompatibilities. Annu. Rev. Genet. 45, 331–355.

Mallet, J. (2005). Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237.

Mank, J.E., Axelsson, E., & Ellegren, H. (2007). Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genome Res. 17, 618–624.

Mank, J.E., Nam, K., & Ellegren, H. (2010). Faster-Z evolution is predominantly due to genetic drift. Mol. Biol. Evol. 27, 661–670.

Manterola, M., Page, J., Vasco, C., Berríos, S., Parra, M.T., Viera, A., Rufas, J.S., Zuccotti, M., Garagna, S., & Fernández-Donoso, R. (2009). A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations. PLoS Genet. 5, e1000625.

Masly, J.P., & Presgraves, D.C. (2007). High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 5, e243.

Matsuda, Y., & Chapman, V.M. (1995). Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16, 261–272.

Matsuda, Y., Hirobe, T., & Chapman, V.M. (1991). Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc. Natl. Acad. Sci. U.S.A. 88, 4850–4854.

Matsuda, Y., Moens, P.B., & Chapman, V.M. (1992). Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) and Mus spretus. Chromosoma 101, 483–492.

Matsui, S., Faitar, S.L., Rossi, M.R., & Cowell, J.K. (2003). Application of spectral karyotyping to the analysis of the human chromosome complement of interspecies somatic cell hybrids. Cancer Genet. Cytogenet. 142, 30–35.

Matsumoto, H., Maruse, H., Inaba, Y., Yoshizawa, K., Sasazaki, S., Fujiwara, A., Nishibori, M., Nakamura, A., Takeda, S., Ichihara, N., Kikuchi, T., Mukai, F., & Mannen, H. (2008). The ubiquitin ligase gene (WWP1) is responsible for the chicken muscular dystrophy. FEBS Letters 582, 2212–2218.

Matzke, M.A., Varga, F., Berger, H., Schernthaner, J., Schweizer, D., Mayr, B., & Matzke, A.J. (1990). A 41-42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma 99, 131–137.

McFarquhar, A.M., & Lake, P.E. (1964). Artificial insemination in quail and the production of chicken-quail hybrids. J. Reprod. Fertil. 8, 261–263.

Meisel, R.P., Malone, J.H., & Clark, A.G. (2012). Faster-X evolution of gene expression in Drosophila. PLoS Genet. 8, e1003013.

Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P.D. (2019). PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426.

Michalak, P., & Noor, M.A.F. (2003). Genome-wide patterns of expression in Drosophila pure species and hybrid males. Mol. Biol. Evol. 20, 1070–1076.

Mikawa, T., Poh, A.M., Kelly, K.A., Ishii, Y., & Reese, D.E. (2004). Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote. Dev. Dyn. 229, 422–432.

Mitsumoto, K., & Nishida, S. (1958) Trials of production of the hybrid between quail and chickens. Jpn. J. Zootech. Sci. 29, 10–17.

Mizushima, S., Hiyama, G., Shiba, K., Inaba, K., Dohra, H., Ono, T., Shimada, K., & Sasanami,T. (2014). The birth of quail chicks after intracytoplasmic sperm injection. Development 141, 3799–3806.

Mizutani M. The Japanese quail in The Relationship between Indigenous Animals and Humans In Apec Region (eds Chang, H. L. & Huang, Y. C. ) 143–163 (The Chinese Society of Animal Science, Tainan, 2003).

Moehring, A.J., Llopart, A., Elwyn, S., Coyne, J.A., & Mackay, T.F.C. (2006). The genetic basis of postzygotic reproductive isolation between Drosophila santomea and D. yakuba due to hybrid male sterility. Genetics 173, 225–233.

Muller, H. J. (1940) Bearing of the Drosophila work on systematics. In: The New Systematics (ed.: Huxley, J. S.), pp. 185–268. Clarendon Press, Oxford.

Muller, H. J. (1942) Isolating mechanisms, evolution, and temperature. Biol. Symp. 6, 71–125.

Musters, H., Huntley, M.A., & Singh, R.S. (2006). A genomic comparison of faster-sex, faster-X, and faster-male evolution between Drosophila melanogaster and Drosophila pseudoobscura. J. Mol. Evol. 62, 693–700.

Neumann, K., Michaux, J., Lebedev, V., Yigit, N., Colak, E., Ivanova, N., Poltoraus, A., Surov, A., Markov, G., Maak, S., Neumann, S., & Gattermann, R. (2006). Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. Mol. Phylogenet. Evol. 39, 135–148.

Nielsen, R., Bustamante, C., Clark, A.G., Glanowski, S., Sackton, T.B., Hubisz, M.J., Fledel-Alon, A., Tanenbaum, D.M., Civello, D., White, T.J., J Sninsky, J., Adams, M.D., & Cargill, M. (2005). A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170.

Nikolettos, N., Küpker, W., Demirel, C., Schöpper, B., Blasig, C., Sturm, R., Felberbaum, R., Bauer, O., Diedrich, K., & Al-Hasani, S. (1999). Fertilization potential of spermatozoa with abnormal morphology. Hum. Reprod. 14 Suppl 1, 47–70.

Nishida-Umehara, C., Tsuda, Y., Ishijima, J., Ando, J., Fujiwara, A., Matsuda, Y., & Griffin, D.K. (2007). The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res. 15, 721–734.

Odorisio, T., Rodriguez, T.A., Evans, E.P., Clarke, A.R., & Burgoyne, P.S. (1998). The meiotic checkpoint monitoring sypapsis eliminates spermatocytes via p53-independent apoptosis. Nat. Genet. 18, 257–261.

Oka, A., Mita, A., Sakurai-Yamatani, N., Yamamoto, H., Takagi, N., Takano-Shimizu, T., Toshimori, K., Moriwaki, K., & Shiroishi, T. (2004). Hybrid breakdown caused by substitution of the X chromosome between two mouse subspecies. Genetics 166, 913–924.

Oka, A., Aoto, T., Totsuka, Y., Takahashi, R., Ueda, M., Mita, A., Sakurai-Yamatani, N., Yamamoto, H., Kuriki, S., Takagi, N., Moriwaki, K., & Shiroishi, T. (2007). Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies. Genetics 175, 185–197.

Oka, A., Takada, T., Fujisawa, H., & Shiroishi, T. (2014). Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation. PLoS Genet. 10, e1004301.

Okamoto, S., Maeda, Y., & Hashiguchi, T. (1991). Analysis of the karyotype of the chicken-quail hybrid. Nihon Chikusan Gakkaiho 62, 742–749.

Olsen, M.W. (1960). Turkey-chicken hybrids. J. Hered. 51, 69–73.

Orr, H.A. (1989). Genetics of sterility in hybrids between two subspecies of Drosophila. Evolution 43, 180–189.

Orr, H.A., & Presgraves, D.C. (2000). Speciation by postzygotic isolation: forces, genes and molecules. Bioessays 22, 1085–1094.

Panić, L., Tamarut, S., Sticker-Jantscheff, M., Barkić, M., Solter, D., Uzelac, M., Grabusić, K., & Volarević, S. (2006). Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell. Biol. 26, 8880–8891.

Peters, A.H., Plug, A.W., van Vugt, M.J., & de Boer, P. (1997). A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 5, 66– 68.

Phadnis, N., & Orr, H.A. (2009). A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323, 376–379.

Presgraves, D.C. (2002). Patterns of postzygotic isolation in Lepidoptera. Evolution 56, 1168– 1183.

Presgraves, D.C. (2008). Sex chromosomes and speciation in Drosophila. Trends Genet. 24, 336– 343.

Presgraves, D.C. (2010). The molecular evolutionary basis of species formation. Nat. Rev. Genet.11, 175–180.

Price, T.D., & Bouvier, M.M. (2002). The evolution of F1 postzygotic incompatibilities in birds.Evolution 56, 2083–2089.

Ramkumar, N., Omelchenko, T., Silva-Gagliardi, N.F., McGlade, C.J., Wijnholds, J., & Anderson,K.V. (2016). Crumbs2 promotes cell ingression during the epithelial-to-mesenchymal transition at gastrulation. Nat. Cell Biol. 18, 1281–1291.

Raudsepp, T., Das, P.J., Avila, F., & Chowdhary, B.P. (2012). The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev. 6, 72–83.

Rebollo, R., Horard, B., Hubert, B., & Vieira, C. (2010). Jumping genes and epigenetics: Towards new species. Gene 454, 1–7.

Reed, K.M., & Werren, J.H. (1995). Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol. Reprod. Dev. 40, 408–418.

Rodriguez, V., Diaz de Barboza, G., Ponce, R., Merico, V., Garagna, S., & Tolosa de Talamoni,N. (2010). Spermatocyte apoptosis, which involves both intrinsic and extrinsic pathways, explains the sterility of Graomys griseoflavus × Graomys centralis male hybrids. Reprod. Fertil. Dev. 22, 478–488.

Roeder, G.S., & Bailis, J.M. (2000). The pachytene checkpoint. Trends Genet. 16, 395–403.

Romanenko, S.A., Volobouev, V.T., Perelman, P.L., Lebedev, V.S., Serdukova, N.A., Trifonov, V.A., Biltueva, L.S., Nie, W., O’Brien, P.C.M., Bulatova, N.S., Ferguson-Smith, M.A., Yang, F., & Graphodatsky, A.S. (2007). Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15, 283–298.

Ross, P. D. (1995) Phodopus campbelli. Mammal. Species 503, 1–7.

Ross, P. D. (1998) Phodopus sungorus. Mammal. Species 595, 1–9.

Royo, H., Polikiewicz, G., Mahadevaiah, S.K., Prosser, H., Mitchell, M., Bradley, A., de Rooij, D.G., Burgoyne, P.S., & Turner, J.M.A. (2010). Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20, 2117–2123.

Safronova, L. D., & Vasil’eva, N. Y. (1996) Meiotic abnormalities in interspecific hybrids between Phodopus sungorus (Pallas, 1773) and Ph. campbelli (Thomas, 1905). Russ. J. Genet. 32, 486–494.

Sakai, C., Konno, F., Nakano, O., Iwai, T., Yokota, T., Lee, J., Nishida-Umehara, C., Kuroiwa, A., Matsuda, Y., & Yamashita, M. (2007). Chromosome elimination in the interspecific hybrid medaka between Oryzias latipes and O. hubbsi. Chromosome Res. 15, 697–709.

Sandnes, G.C. (1957). Fertility and viability in intergeneric pheasant hybrids. Evolution 11, 426– 444.

Sasa, M.M., Chippindale, P.T., & Johnson, N.A. (1998). Patterns of postzygotic isolation in frogs.Evolution 52, 1811–1820.

Schartl, M., Hornung, U., Gutbrod, H., Volff, J.N., & Wittbrodt, J. (1999). Melanoma loss-of- function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153, 1385–1394.

Schilthuizen, M., Giesbers, M.C.W.G., & Beukeboom, L.W. (2011). Haldane’s rule in the 21st century. Heredity 107, 95–102.

Schmid, M., Haaf, T., Weis, H., & Schempp, W. (1986). Chromosomal homoeologies in hamster species of the genus Phodopus (Rodentia, Cricetinae). Cytogenet. Cell Genet. 43, 168–173.

Sciurano, R., Rahn, M., Rey-Valzacchi, G., & Solari, A.J. (2007). The asynaptic chromatin in spermatocytes of translocation carriers contains the histone variant gamma-H2AX and associates with the XY body. Hum. Reprod. 22, 142–150.

Sellier, N., Brillard, J.-P., Dupuy, V., & Bakst, M.R. (2006). Comparative staging of embryo development in chicken, turkey, duck, goose, guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. J. Appl. Poult. Res. 15, 219– 228.

Shaklee, W.E., & Knox, C.W. (1954). Hybridization of the pheasant and fowl. J. Hered. 45, 183– 190.

Sharp, P.J. (1975). A comparison of variations in plasma luteinizing hormone concentrations in male and female domestic chickens (Gallus Domesticus) from hatch to sexual maturity. J Endocrinol. 67, 211–223.

Sheng, G. (2014). Day-1 chick development. Dev. Dyn. 243, 357–367.

Shibusawa, M., Minai, S., Nishida-Umehara, C., Suzuki, T., Mano, T., Yamada, K., Namikawa, T., & Matsuda, Y. (2001). A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenet. Cell Genet. 95, 103–109.

Singh, N.D., Larracuente, A.M., & Clark, A.G. (2008). Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol. Biol. Evol. 25, 454–467.

Skjervold, H., & Mjelstad, H. (1992). Capercailliechicken hybrids. J. Anim. Breeding Genet.109, 149–152.

Skromne, I., & Stern, C.D. (2001). Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128, 2915–2927.

Smith, C.A., Roeszler, K.N., Ohnesorg, T., Cummins, D.M., Farlie, P.G., Doran, T.J., & Sinclair,A.H. (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.

Sokolov, V.E., & Vasil’eva, N.I. (1993). Hybridologic analysis confirms the species specificity of Phodopus sungorus (Pallus, 1773) and Phodopus campbelli (Thomas, 1905). Dokl. Akad. Nauk. 332, 120–123.

Stein, S., & Kessel, M. (1995). A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech. Dev. 49, 37–48.

Streit, A., Lee, K.J., Woo, I., Roberts, C., Jessell, T.M., & Stern, C.D. (1998). Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519.

Suzuki, T., Kurosaki, T., Shimada, K., et al. (1999). Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenet. Cell Genet. 87, 32–40.

Swanson, W.J., & Vacquier, V.D. (2002). The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3, 137–144.

Sweetman, D., Wagstaff, L., Cooper, O., Weijer, C., & Münsterberg, A. (2008). The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals. BMC Dev. Biol. 8, 63.

Tadano, R., Kinoshita, K., Mizutani, M., Atsumi, Y., Fujiwara, A., Saitou, T., Namikawa, T., & Tsudzuki, M. (2010). Molecular characterization reveals genetic uniformity in experimental chicken resources. Exp. Anim. 59, 511–514.

Tadano, R., Nunome, M., Mizutani, M., Kawahara-Miki, R., Fujiwara, A., Takahashi, S., Kawashima, T., Nirasawa, K., Ono, T., Kono, T., & Matsuda, Y. (2014). Cost-effective development of highly polymorphic microsatellite in Japanese quail facilitated by next-generation sequencing. Anim. Genet. 45, 881–884.

Takashima, Y., & Mizuma, Y. (1981). Studies on the chicken-quail hybrids. J. Poult. Sci. 18, 267– 272.

Takashima, Y., & Mizuma, Y. (1982). The testes of chicken-quail hybrids. Tohoku J. Agric. Res.32, 146–150.

Tanabe, Y., Kano, H., Kinoshita, K., Taniwaki, O., & Okabayashi, H. (2000). Gene constitution of a newly found population of Japanese native chickens in southern region of Ehime Prefecture, Shikoku, Japan. J. Poult. Sci. 37, 101–107.

Tanaka, K., Suzuki, T., Nojiri, T., Yamagata, T., Namikawa, T., & Matsuda, Y. (2000). Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica). J. Hered. 91, 412–415.

Tao, Y., Chen, S., Hartl, D.L., & Laurie, C.C. (2003). Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. I. Differential accumulation of hybrid male sterility effects on the X and autosomes. Genetics 164, 1383–1397.

Torgerson, D.G., Kulathinal, R.J., & Singh, R.S. (2002). Mammalian sperm proteins are rapidly evolving: Evidence of positive selection in functionally diverse Genes. Mol. Biol. Evol. 19, 1973– 1980.

Torlopp, A., Khan, M.A.F., Oliveira, N.M.M., Lekk, I., Soto-Jiménez, L.M., Sosinsky, A., & Stern,C.D. (2014). The transcription factor Pitx2 positions the embryonic axis and regulates twinning.eLife 3, e03743.

van Tuinen, M., & Dyke, G.J. (2004). Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol. Phylogenet. Evol. 30, 74–86.

van Tuinen, M., & Hedges, S.B. (2001). Calibration of avian molecular clocks. Mol. Biol. Evol.18, 206–213.

Turelli, M., & Orr, H.A. (1995). The dominance theory of Haldane’s rule. Genetics 140, 389–402.

Turner, J.M.A., Mahadevaiah, S.K., Fernandez-Capetillo, O., Nussenzweig, A., Xu, X., Deng, C.- X., & Burgoyne, P.S. (2005). Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37, 41–47.

Turner, J.M.A., Mahadevaiah, S.K., Ellis, P.J.I., Mitchell, M.J., & Burgoyne, P.S. (2006). Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10, 521–529.

Umemura, S., Yasuda, M., Osamura, R.Y., Kawarada, Y., Sugiyama, T., & Tsutsumi, Y. (1996). Enhancement of TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method using mung bean nuclease, a single-stranded DNA digestion enzyme. J. Histochem. Cytochem. 44, 125–132.

Valdez, M.B., Mizutani, M., Fujiwara, A., Yazawa, H., Yamagata, T., Shimada, K., & Namikawa,T. (2007). Histocompatible chicken inbred lines: homogeneities in the major histocompatibility complex antigens of the GSP, GSN/1, PNP/DO and BM-C inbred lines assessed by hemagglutination, mixed lymphocyte reaction and skin transplantation. Exp. Anim. 56, 329–338.

Valdez, M.B., Kinoshita, K., Mizutani, M., Fujiwara, A., Yazawa, H., Yamagata, T., Shimada, K., & Namikawa, T. (2009). Histocompatibility assessment in the chicken colonies of the RIR- Y8/NU, YL, WL-G, and BL-E closed for 28-48 years. Exp. Anim. 58, 169–174.

Veeramah, K.R., Gutenkunst, R.N., Woerner, A.E., Watkins, J.C., & Hammer, M.F. (2014). Evidence for increased levels of positive and negative selection on the X chromosome versus autosomes in humans. Mol. Biol. Evol. 31, 2267–2282.

Vela, D., Fontdevila, A., Vieira, C., & García Guerreiro, M.P. (2014). A genome-wide survey of genetic instability by transposition in Drosophila hybrids. PLoS ONE 9, e88992.

Vernet, N., Mahadevaiah, S.K., Ojarikre, O.A., Longepied, G., Prosser, H.M., Bradley, A., Mitchell, M.J., & Burgoyne, P.S. (2011). The Y-encoded gene zfy2 acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice. Curr. Biol. 21, 787–793.

Vicoso, B., Haddrill, P.R., & Charlesworth, B. (2008). A multispecies approach for comparing sequence evolution of X-linked and autosomal sites in Drosophila. Genet. Res. 90, 421–431.

Vicoso, B., Emerson, J.J., Zektser, Y., Mahajan, S., & Bachtrog, D. (2013). Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 11, e1001643.

Voiculescu, O., Bodenstein, L., Lau, I.-J., & Stern, C.D. (2014). Local cell interactions and self- amplifying individual cell ingression drive amniote gastrulation. eLife 3, e01817.

Vrana, P.B. (2007). Genomic imprinting as a mechanism of reproductive isolation in mammals.J. Mammal. 88, 5–23.

Wang, Z., Zhang, J., Yang, W., An, N., Zhang, P., Zhang, G., & Zhou, Q. (2014). Temporal genomic evolution of bird sex chromosomes. BMC Evol. Biol. 14, 250.

Watanabe, S., & Amano, T. (1967). Studies on the intergeneric hybrids between chicken and quail.Nihon Chikusan Gakkaiho 38, 30–32.

Weiss, M.C., & Green, H. (1967). Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. U.S.A. 58, 1104– 1111.

Werren, J.H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. U.S.A. 108 Suppl 2, 10863–10870.

Werren, J.H., Nur, U., & Wu, C.-I. (1988). Selfish genetic elements. Trends Ecol. Evol. 3, 297– 302.

Wilcox, F. H., & Clark, C. E. (1961) Chicken-quail hybrids. J. Hered. 52, 167–170.

Wilson, A.C., Maxson, L.R., & Sarich, V.M. (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Natl. Acad. Sci. U.S.A. 71, 2843–2847.

Wolf, J.B., Oakey, R.J., & Feil, R. (2014). Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications. Heredity 113, 167–175.

Wu, C.-I. (1992). A note on Haldane’s rule: Hybrid inviability versus hybrid sterility. Evolution46, 1584–1587.

Wu, C.I., & Davis, A.W. (1993). Evolution of postmating reproductive isolation: the composite nature of Haldane’s rule and its genetic bases. Am. Nat. 142, 187–212.

Wu, C.I., & Palopoli, M.F. (1994). Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 28, 283–308.

Yamada, K., Nishida-Umehara, C., Ishijima, J., Murakami, T., Shibusawa, M., Tsuchiya, K., Tsudzuki, M., & Matsuda, Y. (2006). A novel family of repetitive DNA sequences amplified site- specifically on the W chromosomes in Neognathous birds. Chromosome Res. 14, 613–627.

Yokomine, T., Kuroiwa, A., Tanaka, K., Tsudzuki, M., Matsuda, Y., & Sasaki, H. (2001). Sequence polymorphisms, allelic expression status and chromosome locations of the chicken IGF2 and MPR1 genes. Cytogenet. Cell Genet. 93, 109–113.

Yokomine, T., Shirohzu, H., Purbowasito, W., Toyoda, A., Iwama, H., Ikeo, K., Hori, T., Mizuno, S., Tsudzuki, M., Matsuda, Y., Hattori, M., Sakaki, Y., & Sasaki, H. (2005). Structural and functional analysis of a 0.5-Mb chicken region orthologous to the imprinted mammalian Ascl2/Mash2–Igf2–H19 region. Genome Res. 15, 154–165.

Zelesco, P.A., & Graves, J.A. (1987). Chromosome segregation from cell hybrids. III. Segregation is independent of spindle constitution. Genome 29, 528–531.

Zelesco, P.A., & Graves, J.A. (1988). Chromosome segregation from cell hybrids. IV. Movement and position of segregant set chromosomes in early-phase interspecific cell hybrids. J. Cell. Sci. 89, 49–56.

Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next-generation sequencing on genomics. J. Genet. Genomics 38, 95–109.

Zidane, N., Ould-Abeih, M.B., Petit-Topin, I., & Bedouelle, H. (2013). The folded and disordered domains of human ribosomal protein SA have both idiosyncratic and shared functions as membrane receptors. Biosci. Rep. 33.

Zinski, J., Tajer, B., & Mullins, M.C. (2018). TGF-β family signaling in early vertebrate development. Cold Spring Harb. Perspect Biol. 10.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る