リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Impact of Mountain Topography and Environmental Flow on the Predictability of Localized Thunderstorms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Impact of Mountain Topography and Environmental Flow on the Predictability of Localized Thunderstorms

Wu, Pin-Ying 京都大学 DOI:10.14989/doctor.k24124

2022.07.25

概要

日射の影響を受けて局地的に発生する雷雨は、短時間で急速に発達し、空間規模が数km~数十km程度の小規模であることから、その発生の予測は一般に困難である。特に、一様かつ平坦な地形の場合には、雷雨はランダムに発生し、いつどこで発生するかを予測することは難しい。一方、山岳地形が存在する場合には、山岳に起因した局地循環の影響により、雷雨の発生には一定の規則性があるものと想定される。本研究では、日射の影響によって発生する局地的な雷雨の予測可能性に対して、地形や環境風の条件がどのように影響するのかについて、数値気象モデルにより調べた。夏季の日変化する雷雨活動を想定し、地表面加熱により励起される大気下層の不安定化および山岳地形により励起される熱的な局地循環の影響のもと、雷雨の発生を微小な初期摂動の違いによる双子実験でシミュレートし、両者の湿潤対流の発生状況の違いを誤差として、誤差の時間発展を解析した。一様平坦な地形や孤立峰の山岳地形ならびに孤立峰の形状を様々に変化させた数値実験、また環境風の鉛直シアーを様々に変化させた数値実験を実施し、地形や環境風への感度を調べた。

標高1000 mの山岳地形を基準として平坦地形の場合と比べると、山岳ありの場合において、誤差は早朝から急成長し、誤差の空間規模は数kmから数十kmへと大きくなる。一方、対流雲が発生し始める時間を基準として誤差成長を比較すると、山岳ありの実験のほうが平坦地形の実験よりも誤差成長は緩やかである。また、山岳ありの実験で、山岳近傍部と山岳から離れた平坦部とで領域別に評価すると、山岳近傍部での誤差成長の開始時刻が遅くなる。山岳の標高や水平サイズを変化させた感度実験から、山岳の標高が高くなるほど、また山岳の水平サイズが小さく急峻になるほど、誤差の大きさが小さくなる。さらに、山岳近傍部と平坦部とでの誤差成長の違いは、山岳がある標高以上になると顕著になるが、山岳が低くなると小さくなる。これら誤差の違いを水蒸気変動・風速変動・温度変動の各寄与で評価し、対流活動に関連した風速変動と温度変動が地形の違いに敏感であることを示した。これら誤差成長の原因として、山岳地形による強制上昇と熱的局地循環による下層風の収束および境界層の成層不安定化とが関係し合うことで、未飽和空気塊が上昇する範囲の局所性の違いにより対流雲の発生する時刻や面的な広がりが異なることが重要であることを示した。加えて、風の鉛直シアーを変化させた実験から、対流雲の最初の発生から後続の対流雲への発生に繋がる過程が風速条件に強く依存することを示した。これは、初期の対流雲の発生による非断熱加熱分布が後続の対流の発生に影響することに起因するためであり、この影響は無風条件や強い鉛直シアーでは顕著でなくなる。こういった風速条件への依存性の違いから、山岳地形による誤差成長への影響の度合いも変化する。

誤差成長の時間発展を対流雲が十分に発達する時刻まで評価し、誤差が飽和に達する対流活動の最大時には、山岳地形による影響はなくなるが、風速条件の違いによる影響が認められる。すなわち、誤差が飽和に達する時刻は、風速条件の違いの影響を受ける。しかし、時間積算雨量の空間分布の相関性で見ると、地形の影響は表れる。

以上の通り、本研究は、局所的に発生・発達する雷雨の誤差成長の地形や環境風の鉛直シアーへの依存性を数値的に調べることで、雷雨の予測可能性に関する重要な知見が得られた。

この論文で使われている画像

参考文献

Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720–1739, https://doi.org/10.1175/1520- 0493(1995)123<1720:TROMAT>2.0.CO;2.

Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, Academic Press, 173–265.

Bachmann, K., C. Keil, G. C. Craig, M. Weissmann, and C. A. Welzbacher, 2020: Predictability of deep convection in idealized and operational forecasts: Effects of radar data assimilation, orography, and synoptic weather regime. Mon. Wea. Rev., 148, 63–81, https://doi.org/10.1175/MWR-D-19-0045.1.

——, ——, and M. Weissmann, 2019: Impact of radar data assimilation and orography on predictability of deep convection. Quart. J. Roy. Meteor. Soc., 145, 117–130, https://doi.org/10.1002/qj.3412.

Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part 1: Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356, https://doi.org/10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

——, and C. Barker Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476, https://doi.org/10.1175/1520- 0493(1987)115<0463:TGZITC>2.0.CO;2.

Barthlott, C., U. Corsmeier, C. Meißner, F. Braun, and C. Kottmeier, 2006: The influence of mesoscale circulation systems on triggering convective cells over complex terrain. Atmos. Res., 81, 150–175, https://doi.org/10.1016/j.atmosres.2005.11.010.

Bei, N., and F. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-yu front of China. Quart. J. Roy. Meteor. Soc., 133, 83–99, https://doi.org/10.1002/qj.20.

——, and ——, 2014: Mesoscale predictability of moist baroclinic waves: Variable and scale- dependent error growth. Adv. Atmos. Sci., 31, 995–1008, https://doi.org/10.1007/s00376- 014-3191-7.

Bierdel, L., T. Selz, and G. C. Craig, 2018: Theoretical aspects of upscale error growth on the mesoscales: Idealized numerical simulations. Quart. J. Roy. Meteor. Soc., 144, 682–694, https://doi.org/10.1002/qj.3236.

Boer, G. J., 1994: Predictability regimes in atmospheric flow. Mon. Wea. Rev., 122, 2285– 2295, https://doi.org/10.1175/1520-0493(1994)122<2285:PRIAF>2.0.CO;2.

Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor. Z., 21, 1–7. (English translation by Y. Mintz, 1954: The problem of weather forecasting as a problem in mechanics and physics. Reprinted in Shapiro and Grøna°s (1999), 1–4.)

Boffetta, G., A. Celani, A. Crisanti, and A. Vulpiani, 1997: Predictability in two-dimensional decaying turbulence. Phys. Fluids, 9, 724–734, https://doi.org/10.1063/1.869227.

——, and S. Musacchio, 2017: Chaos and predictability of homogeneous-isotropic turbulence. Phys. Rev. Lett., 119, 54102, https://doi.org/10.1103/PhysRevLett.119.054102.

Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416,

Buizza, R., and M. Leutbecher, 2015: The forecast skill horizon. Quart. J. Roy. Meteor. Soc., 141, 3366–3382, https://doi.org/10.1002/qj.2619.

Carbone, R. E., and J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

——, W. A. Cooper, and W.-C. Lee, 1995: Forcing of flow reversal along the windward slopes of Hawaii. Mon. Wea. Rev., 123, 3466–3480, https://doi.org/10.1175/1520- 0493(1995)123<3466:FOFRAT>2.0.CO;2.

Chang, H.-L., B. G. Brown, P.-S. Chu, Y.-C. Liou, and W.-H. Wang, 2017: Nowcast guidance of afternoon convection initiation for Taiwan. Wea. Forecasting, 32, 1801–1817, https://doi.org/10.1175/WAF-D-16-0224.1.

Changnon, S. A., 2001: Damaging thunderstorm activity in the United States. Bull. Amer. Meteor. Soc., 82, 597–608, https://doi.org/10.1175/1520- 0477(2001)082<0597:DTAITU>2.3.CO;2.

Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136–162, https://doi.org/10.1175/1520- 0469(1947)004<0136:TDOLWI>2.0.CO;2.

——, R. Fjörtoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, https://doi.org/10.1111/j.2153-3490.1950.tb00336.x.

Chen, C.-S., and C.-Y. Lin, 1997: A numerical study of airflow over Taiwan Island. Atmos. Environ., 31, 463–473, https://doi.org/10.1016/S1352-2310(96)00191-4.

——, C.-Y. Lin, Y.-J. Chuang, and H.-C. Yeh, 2002: A study of afternoon heavy rainfall in Taiwan during the Mei-yu season. Atmos. Res., 65, 129–149, https://doi.org/10.1016/S0169-8095(02)00061-3.

Chen, T.-C., J.-D. Tsay, and E. S. Takle, 2016: A forecast advisory for afternoon thunderstorm occurrence in the Taipei Basin during summer developed from diagnostic analysis. Wea. Forecasting, 31, 531–552, https://doi.org/10.1175/WAF-D-15-0082.1.

——, M.-C. Yen, J.-C. Hsieh, and R. W. Arritt, 1999: Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc., 80, 2299–2312, https://doi.org/10.1175/1520- 0477(1999)080<2299:DASVOT>2.0.CO;2.

Cheng, H.-W., S.-C. Yang, Y.-C. Liou, and C.-S. Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. SOLA, 16, 97–103, https://doi.org/10.2151/sola.2020-017.

Cheng, L.-W., and C.-K. Yu, 2019: Investigation of orographic precipitation over an isolated, three-dimensional complex topography with a dense gauge network, radar observations, and upslope model. J. Atmos. Sci., 76, 3387–3409, https://doi.org/10.1175/JAS-D-19- 0005.1.

Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 1993–2011, https://doi.org/10.1175/JAS-D-12-0166.1.

Clark, D., A. Armua, C. Freeman, D. J. Brener, and A. Berera, 2021: Chaotic measure of the transition between two- and three-dimensional turbulence. Phys. Rev. Fluids, 6, https://doi.org/10.1103/physrevfluids.6.054612.

Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection- permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165–181, https://doi.org/10.1002/met.1538.

Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea.

Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930–951, https://doi.org/10.1175/1520- 0442(2004)017<0930:TDCAID>2.0.CO;2.

Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474–491, https://doi.org/10.1111/j.1600-0870.1987.tb00322.x.

Daley, R., 1981: Predictability experiments with a baroclinic model. Atmos.-Ocean, 19, 77– 89, https://doi.org/10.1080/07055900.1981.9649102.

Demko, J. C., B. Geerts, Q. Miao, and J. A. Zehnder, 2009: Boundary layer energy transport and cumulus development over a heated mountain: An observational study. Mon. Wea. Rev., 137, 447–468, https://doi.org/10.1175/2008MWR2467.1.

Done, J. M., G. C. Craig, S. L. Gray, and P. A. Clark, 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638–648, https://doi.org/10.1002/qj.943.

Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272-294.

Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237–243, https://doi.org/10.1175/BAMS-D-15-00070.1.

——, and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 2476–2488, https://doi.org/10.1175/JAS-D-14-0007.1.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.

Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627–1648,

Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633, https://doi.org/10.1175/WAF-D-10-05020.1. Flesch, T. K., and G. W. Reuter, 2012: WRF model simulation of two Alberta flooding events and the impact of topography. J. Hydrometeor., 13, 695–708, https://doi.org/10.1175/JHM-D-11-035.1.

Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development Strategy. Bull. Amer. Meteor. Soc., 85, 955–966, https://doi.org/10.1175/BAMS-85-7-955.

Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2013: Atmospheric predictability revisited. Tellus, 65A, 19022, https://doi.org/10.3402/tellusa.v65i0.19022.

Fu, D., and X. Guo, 2012: A cloud-resolving simulation study on the merging processes and effects of topography and environmental winds. J. Atmos. Sci., 69, 1232–1249, https://doi.org/10.1175/JAS-D-11-049.1.

Gopalakrishnan, S. G., S. B. Roy, and R. Avissar, 2000: An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations.

J. Atmos. Sci., 57, 334–351, https://doi.org/10.1175/1520- 0469(2000)057<0334:AEOTSA>2.0.CO;2.

Grimsdell, A. W., and W. M. Angevine, 2002: Observations of the afternoon transition of the convective boundary layer. J. Appl. Meteor., 41, 3–11, https://doi.org/10.1175/1520- 0450(2002)041<0003:OOTATO>2.0.CO;2.

Hagen, M., J. van Baelen, and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137, 224–235, https://doi.org/10.1002/qj.784.

Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 2124–2137, https://doi.org/10.1002/qj.877.

Harlim, J., M. Oczkowski, J. A. Yorke, E. Kalnay, and B. R. Hunt, 2005: Convex error growth patterns in a global weather model. Phys. Rev. Lett., 94, 228501, https://doi.org/10.1103/PhysRevLett.94.228501.

Hassanzadeh, H., J. Schmidli, W. Langhans, L. Schlemmer, and C. Schär, 2016: Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations. Meteorologische Zeitschrift, 25, 181–194, https://doi.org/10.1127/metz/2015/0653.

Hohenegger, C., and C. Schär, 2007a: Atmospheric predictability at synoptic versus cloud- resolving scales. Bull. Amer. Meteor. Soc., 88, 1783–1794, https://doi.org/10.1175/BAMS-88-11-1783.

——, and ——, 2007b: Predictability and error growth dynamics in cloud-resolving models.

J. Atmos. Sci., 64, 4467–4478, https://doi.org/10.1175/2007JAS2143.1.

——, D. Lüthi, and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 2095–2107, https://doi.org/10.1175/MWR3176.1.

Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, https://doi.org/10.1029/2011RG000365.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

Imamovic, A., L. Schlemmer, and C. Schär, 2019: Mountain volume control on deep- convective rain amount during episodes of weak synoptic forcing. J. Atmos. Sci., 76, 605– 626, https://doi.org/10.1175/JAS-D-18-0217.1.

Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. J. Climate, 20, 1680–1692, https://doi.org/10.1175/JCLI4084.1.

Johnson, A., and Coauthors, 2014: Multiscale Characteristics and Evolution of Perturbations for Warm Season Convection-Allowing Precipitation Forecasts: Dependence on Background Flow and Method of Perturbation. Mon. Wea. Rev., 142, 1053–1073, https://doi.org/10.1175/MWR-D-13-00204.1.

Johnston, M. C., C. E. Holloway, and R. S. Plant, 2018: Cloud trails past Bermuda: A five- year climatology from 2012 to 2016. Mon. Wea. Rev., 146, 4039–4055, https://doi.org/10.1175/MWR-D-18-0141.1.

Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 1477–1497, https://doi.org/10.1175/JAS-D-17- 0343.1.

——, 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257–276, https://doi.org/10.1175/JAS-D-19-0116.1.

——, S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale- dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter

Jury, M. R., 2020: Diurnal summer climate of the Abyssinia highlands. Int. J. Climatol., 40, 4575–4585, https://doi.org/10.1002/joc.6476.

Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press, 368 pp, https://doi.org/10.1017/CBO9780511802270.

Kerns, B. W. J., Y.-L. Chen, and M.-Y. Chang, 2010: The diurnal cycle of winds, rain, and clouds over Taiwan during the Mei-yu, summer, and autumn rainfall regimes. Mon. Wea. Rev., 138, 497–516, https://doi.org/10.1175/2009MWR3031.1.

Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmos., 9, https://doi.org/10.3390/atmos9030080.

——, and D. R. Durran, 2005: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 3758–3774, https://doi.org/10.1175/JAS3568.1.

Kotsuki, S., K. Terasaki, K. Kanemaru, M. Satoh, T. Kubota, and T. Miyoshi, 2019: Predictability of record-breaking rainfall in Japan in July 2018: Ensemble forecast experiments with the near-real-time global atmospheric data assimilation system NEXRA. SOLA, 15A, 1-7, https://doi.org/10.2151/sola.15A-001.

Kovacs, M., and D. J. Kirshbaum, 2016: Topographic impacts on the spatial distribution of deep convection over southern Quebec. J. Appl. Meteor., 55, 743–762, https://doi.org/10.1175/JAMC-D-15-0239.1.

Kuo, K.-T., and C.-M. Wu, 2019: The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. J. Meteor. Soc. Japan, 97, 501–517, https://doi.org/10.2151/jmsj.2019-031.

Langhans, W., J. Schmidli, O. Fuhrer, S. Bieri, and C. Schär, 2013: Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and Lawson, J. R., 2019: Predictability of idealized thunderstorms in buoyancy–shear space. J. Atmos. Sci., 76, 2653–2672, https://doi.org/10.1175/JAS-D-18-0218.1.

Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29, 1041–1058, https://doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2.

Leoncini, G., R. S. Plant, S. L. Gray, and P. A. Clark, 2010: Perturbation growth at the convective scale for CSIP IOP18. Quart. J. Roy. Meteor. Soc., 136, 653–670, https://doi.org/10.1002/qj.587.

Leung, T. Y., M. Leutbecher, S. Reich, and T. G. Shepherd, 2019: Atmospheric predictability: Revisiting the inherent finite-time barrier. J. Atmos. Sci., 76, 3883–3892, https://doi.org/10.1175/JAS-D-19-0057.1.

Levizzani, V., F. Pinelli, M. Pasqui, S. Melani, A. G. Laing, and R. E. Carbone, 2010: A 10- year climatology of warm-season cloud patterns over Europe and the Mediterranean from Meteosat IR observations. Atmos. Res., 97, 555–576, https://doi.org/10.1016/j.atmosres.2010.05.014.

Li, J., T. Chen, and N. Li, 2017: Diurnal variation of summer precipitation across the central Tian Shan mountains. J. Appl. Meteor, 56, 1537–1550, https://doi.org/10.1175/JAMC- D-16-0265.1.

Lilly, D.K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148–172, https://doi.org/10.3402/tellusa.v14i2.9537.

——, 1990: Numerical prediction of thunderstorms—has its time come? Quart. J. Roy. Meteor. Soc., 116, 779–798, https://doi.org/10.1002/qj.49711649402.

Lin, P.-F., P.-L. Chang, B. Jong-Dao Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective prediction of warm season afternoon thunderstorms in northern Taiwan using a fuzzy logic approach. Wea. Forecasting, 27, 1178–1197, https://doi.org/10.1175/WAF-D-11-

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

——, 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x.

——, 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505–513, https://doi.org/10.1111/j.2153-3490.1982.tb01839.x.

Magnusson, L., and E. Källén, 2013: Factors Influencing Skill Improvements in the ECMWF Forecasting System. Mon. Wea. Rev., 141, 3142–3153, https://doi.org/10.1175/MWR-D- 12-00318.1.

Mapes, B., S. Tulich, T. Nasuno, and M. Satoh, 2008: Predictability aspects of global aqua- planet simulations with explicit convection. J. Meteor. Soc. Japan, 86A, 175–185, https://doi.org/10.2151/jmsj.86A.175.

Markowski, P. M., 2020: What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Wea. Rev., 148, 3157–3180, https://doi.org/10.1175/MWR-D-20- 0076.1.

Melhauser, C., and F. Zhang, 2012: Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales. J. Atmos. Sci., 69, 3350–3371, https://doi.org/10.1175/JAS-D-11-0315.1.

Métais, O., and M. Lesieur, 1986: Statistical predictability of decaying turbulence. J. Atmos. Sci., 43, 857–870, https://doi.org/10.1175/1520- 0469(1986)043<0857:SPODT>2.0.CO;2.

Miao, J.-E., and M.-J. Yang, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. J. Meteor. Soc. Japan, 98, 129–152, https://doi.org/10.2151/jmsj.2020-008.

Miglietta, M. M., A. Manzato, and R. Rotunno, 2016: Characteristics and predictability of a supercell during HyMeX SOP1. Quart. J. Roy. Meteor. Soc., 142, 2839–2853, https://doi.org/10.1002/qj.2872.

Morss, R. E., C. Snyder, and R. Rotunno, 2009: Spectra, spatial scales, and predictability in a quasigeostrophic Model. J. Atmos. Sci., 66, 3115–3130, https://doi.org/10.1175/2009JAS3057.1.

Mu, M., W. Duan, and Y. Tang, 2017: The predictability of atmospheric and oceanic motions: Retrospect and prospects. Sci. China Earth Sci, 60, 2001–2012, https://doi.org/10.1007/s11430-016-9101-x.

Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling perspective. J. Atmos. Sci., 77, 3929–3949, https://doi.org/10.1175/JAS-D-19- 0190.1.

Muller, C., 2013: Impact of convective organization on the response of tropical precipitation extremes to warming. J. Climate, 26, 5028–5043, https://doi.org/10.1175/JCLI-D-12- 00655.1.

Nastrom, G. D., and K. S. Gage, 1985: A Climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728–743, https://doi.org/10.1175/2008JHM939.1.

Ngan, K., and G. E. Eperon, 2011: Middle atmosphere predictability in a numerical weather ——, P. Bartello, and D. N. Straub, 2009: Predictability of rotating stratified turbulence. J. Atmos. Sci., 66, 1384–1400, https://doi.org/10.1175/2008JAS2799.1.

Nielsen, E. R., and R. S. Schumacher, 2016: Using convection-allowing ensembles to understand the predictability of an extreme rainfall event. Mon. Wea. Rev., 144, 3651– 3676, https://doi.org/10.1175/MWR-D-16-0083.1.

Nomura, S., and T. Takemi, 2011: Environmental stability for afternoon rain events in the Kanto Plain in summer. SOLA, 7, 9–12, https://doi.org/10.2151/sola.2011-003.

Palmer, T. N., A. Döring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123–R141, https://doi.org/10.1088/0951-7715/27/9/r123.

Persson, A., 2005: Early operational numerical weather prediction outside the USA: An historical introduction. Part 1: Internationalism and engineering NWP in Sweden, 1952–69. Meteor. Appl., 12, 135–159, https://doi.org/DOI: 10.1017/S1350482705001593.

Potvin, C. K., E. M. Murillo, M. L. Flora, and D. M. Wheatley, 2017: Sensitivity of supercell Simulations to Initial-Condition Resolution. J. Atmos. Sci., 74, 5–26, https://doi.org/10.1175/JAS-D-16-0098.1.

Powers, J. G., and Coauthors, 2017: The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1.

Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random Error Growth in NMC’s Global Forecasts. Mon. Wea. Rev., 122, 1281–1305, https://doi.org/10.1175/1520- 0493(1994)122<1281:REGING>2.0.CO;2.

Richardson, L.F., 1922: Weather Prediction by Numerical Process. Cambridge Univ. Press, 236 pp.

Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645–671,

Romatschke, U., and R. A. Houze, 2010: Extreme summer convection in South America. J. Climate, 23, 3761–3791, https://doi.org/10.1175/2010JCLI3465.1.

Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 1063–1076, https://doi.org/10.1175/2007JAS2449.1.

Schmidli, J., 2013: Daytime heat transfer processes over mountainous terrain. J. Atmos. Sci., 70, 4041–4066, https://doi.org/10.1175/JAS-D-13-083.1.

——, S. Böing, and O. Fuhrer, 2018: Accuracy of simulated diurnal valley winds in the Swiss Alps: Influence of grid resolution, topography filtering, and land surface datasets. Atmos., 9, https://doi.org/10.3390/atmos9050196.

Selz, T., 2019: Estimating the intrinsic limit of predictability using a stochastic convection scheme. J. Atmos. Sci., 76, 757–765, https://doi.org/10.1175/JAS-D-17-0373.1.

——, and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813–827, https://doi.org/10.1175/MWR-D-14-00140.1.

Serafin, S., and Coauthors, 2018: Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmos., 9, https://doi.org/10.3390/atmos9030102.

Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647–677, https://doi.org/10.1256/003590002321042135.

——, R. Mureau, and T. Petroliagis, 1995: Error growth and estimates of predictability from the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 121, 1739–1771, https://doi.org/10.1002/qj.49712152711.

Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra.

——, and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. No. NCAR/TN-556+STR, 145 pp., http://dx.doi.org/10.5065/1dfh-6p97.

——, S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 4369–4381, https://doi.org/10.1175/JAS-D-14-0114.1.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–164, https://doi.org/10.1175/1520- 0493(1963)091<0099:GCEWTP>2.3.CO;2.

Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 1872–1905, https://doi.org/10.1175/1520- 0469(1988)045<1872:OTDOHC>2.0.CO;2.

Straus, D., and D. Paolino, 2008: Intermediate time error growth and predictability: tropics versus mid-latitudes. Tellus, 61A, 579–586, https://doi.org/10.1111/j.1600- 0870.2009.00411.x.

Sun, Y. Q., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438, https://doi.org/10.1175/JAS-D-15-0142.1.

——, and ——, 2020: A new theoretical framework for understanding multiscale atmospheric predictability. J. Atmos. Sci., 77, 2297–2309, https://doi.org/10.1175/JAS-D-19-0271.1.

——, R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185– 201, https://doi.org/10.1175/JAS-D-16-0097.1.

Surcel, M., I. Zawadzki, and M. K. Yau, 2015: A study on the scale dependence of the predictability of precipitation patterns. J. Atmos. Sci., 72, 216–235,

Takemi, T., 2014: Characteristics of summertime afternoon rainfall and its environmental conditions in and around the Nobi Plain. SOLA, 10, 158–162, https://doi.org/10.2151/sola.2014-033.

——, and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131, 2085–2101, https://doi.org/10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.

——, and S. Tsuchida, 2014: Statistical analysis on precipitation events over the Kinki District, Japan in summer (in Japanese with an English abstract). Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 57B, 216-238, https://www.dpri.kyoto- u.ac.jp/nenpo/no57/ronbunB/a57b0p24.pdf.

Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting16th conference on numerical weather prediction, pp. 11–15.

Thompson, P. D., 1953: On the theory of large-scale disturbances in a two-dimensional baroclinic equivalent of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 51–69, https://doi.org/10.1002/qj.49707933905.

——, 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295, https://doi.org/10.1111/j.2153- 3490.1957.tb01885.x.

Tompkins, A. M., and A. G. Semie, 2017: Organization of tropical convection in low vertical wind shears: Role of updraft entrainment. J. Adv. Model. Earth Syst., 9, 1046–1068, https://doi.org/10.1002/2016MS000802.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330, https://doi.org/10.1175/1520-

Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical Aspects. Wea. Forecasting, 8, 379–398, https://doi.org/10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2.

Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703–713, https://doi.org/10.1175/1520- 0493(2004)132<0703:SIAAPA>2.0.CO;2.

Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds — Observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264–286, https://doi.org/10.1007/BF01045154.

Vincent, C. L., and T. P. Lane, 2016: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 1983–2005, https://doi.org/10.1175/MWR-D-15-0326.1.

Vukicevic, T., and R. M. Errico, 1990: The Influence of Artificial and Physical Factors upon Predictability Estimates Using a Complex Limited-Area Model. Mon. Wea. Rev., 118, 1460–1482, https://doi.org/10.1175/1520-0493(1990)118<1460:TIOAAP>2.0.CO;2.

Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406–419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

Walser, A., D. Lüthi, and C. Schär, 2004: Predictability of Precipitation in a Cloud-Resolving Model. Mon. Wea. Rev., 132, 560–577, https://doi.org/10.1175/1520- 0493(2004)132<0560:POPIAC>2.0.CO;2.

Weisman, M. L., and J. B. Klemp, 1982: The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon. Wea. Rev., 110, 504– 520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 2191–2210, https://doi.org/10.1175/jas-d-17-0006.1.

——, and ——, 2018: Ensemble spread grows more rapidly in higher-resolution simulations of deep convection. J. Atmos. Sci., 75, 3331–3345, https://doi.org/10.1175/jas-d-17- 0332.1.

——, and ——, 2019: The scale dependence of initial-condition sensitivities in simulations of convective systems over the southeastern United States. Quart. J. Roy. Meteor. Soc., 145, 57–74, https://doi.org/10.1002/qj.3367.

White, J. D., A. Aiyyer, and J. O. H. Russell, 2021: The impact of orography on the African easterly wave stormtrack. J. Geophys. Res. Atmos., 126, e2020JD033749, https://doi.org/10.1029/2020JD033749.

Whiteman, C.D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor, 5-42, Soc. https://doi.org/10.1007/978-1-935704-25-6_2.

Wu, N., X. Zhuang, J. Min, and Z. Meng, 2020: Practical and intrinsic predictability of a warm-sector torrential rainfall event in the south China monsoon region. J. Geophys. Res. Atmos., 125, e2019JD031313, https://doi.org/10.1029/2019JD031313.

Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 3771–3785, https://doi.org/10.1175/JAS-D-17-0157.1.

Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185, https://doi.org/10.1175/1520- 0469(2003)060<1173:EOMCOM>2.0.CO;2.

——, N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594, https://doi.org/10.1175/JAS4028.1.

——, Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 1077–1091, https://doi.org/10.1175/JAS-D-18-0269.1.

Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2015: Practical predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to synoptic timing and topographical influence. Mon. Wea. Rev., 143, 2973–2997, https://doi.org/10.1175/MWR-D-14-00394.1.

——, ——, ——, and ——, 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 1273–1298, https://doi.org/10.1175/MWR-D-15-0105.1.

Zhuang, X., J. Min, L. Zhang, S. Wang, N. Wu, and H. Zhu, 2020: Insights into convective- scale predictability in east China: Error growth dynamics and associated impact on precipitation of warm-season convective events. Adv. Atmos. Sci., 37, 893–911, https://doi.org/10.1007/s00376-020-9269-5.

参考文献をもっと見る