リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「3.2 Å Cryo-EM Structure of Cyanobacterial Monomeric Photosystem I : Monomerization Unravels the Red Chlorophylls」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

3.2 Å Cryo-EM Structure of Cyanobacterial Monomeric Photosystem I : Monomerization Unravels the Red Chlorophylls

Çoruh, Mehmet Orkun 大阪大学 DOI:10.18910/82033

2021.03.24

概要

A comprehensive history of experimentation dedicated to the understanding of photosynthesis in the context of structural biology, biochemistry, biophysics, and evolution entailed an understanding of the process. Despite the illustrative outcomes of structural analysis in describing the machinery of photosynthesis, the governing dynamics and functions are yet to be ascribed at the molecular level. The oligomeric configurations of Photosystem I amongst different species and the reasoning behind the evolution from oligomeric to monomeric organization is one of the inconclusive issues, having the potential to elucidate some mechanisms owing to well-investigated alterations in the behavior of monomeric and oligomeric states. Here, single-particle Cryo-EM structural analysis of an intact and functional PSI monomer at
3.2 Å resolution is reported. Interpretation of the Coulombic map and comparison with the trimeric structure allowed us to deduce the differences in structure and cofactor content, revealing the monomerization- induced flexibility and chlorophyll losses, providing insights and conclusions about long- wavelength absorption of PSI, the identities of red chlorophylls, and the function of peripheral subunits.

この論文で使われている画像

参考文献

[1] Shih PM. Photosynthesis and early Earth. Current Biology. 2015 Oct 5;25(19):R855-9

[2] Olson JM, Pierson BK. Photosynthesis 3.5 thousand million years ago. Photosynthesis Research. 1986 Jan 1;9(1-2):251-9.

[3] Farquhar J, Zerkle AL, Bekker A. Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis research. 2011 Jan 1;107(1):11- 36.

[4] Boardman NT. Comparative photosynthesis of sun and shade plants. Annual review of plant physiology. 1977 Jun;28(1):355-77.

[5] Sage RF. The evolution of C4 photosynthesis. New phytologist. 2004 Feb;161(2):341-70.

[6] Barber J. A mechanism for water splitting and oxygen production in photosynthesis. Nature Plants. 2017 Apr 3;3(4):1-5.

[7] Li Y, Chen M. Novel chlorophylls and new directions in photosynthesis research. Functional Plant Biology. 2015 Jun 2;42(6):493-501.

[8] Fleming GR, Scholes GD. Quantum mechanics for plants. Nature. 2004 Sep;431(7006):256-7

[9] Lloyd S. Quantum coherence in biological systems. InJournal of Physics- Conference Series 2011 Jul 20 (Vol. 302, No. 1, p. 012037).

[10] Barber J, Tran PD. From natural to artificial photosynthesis. Journal of The Royal Society Interface. 2013 Apr 6;10(81):20120984..

[11] Kim D, Sakimoto KK, Hong D, Yang P. Artificial photosynthesis for sustainable fuel and chemical production. Angewandte Chemie International Edition. 2015 Mar 9;54(11):3259-66..

[12] Kiang NY, Segura A, Tinetti G, Blankenship RE, Cohen M, Siefert J, Crisp D, Meadows VS. Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology. 2007 Feb 1;7(1):252-74.

[13] Vera JP, Möhlmann D, Butina F, Lorek A, Wernecke R, Ott S. Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology. 2010 Mar 1;10(2):215-27.

[14] Hohmann-Marriott, Martin F.; Blankenship, Robert E. Evolution of photosynthesis. Annual review of plant biology, 2011, 62: 515-548.

[15] Raymond J, Segre D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–67

[16] Walker, J. C. (1980). Atmospheric constraints on the evolution of metabolism. In Limits of Life (pp. 121-132). Springer, Dordrecht.

[17] Musazade, E., Voloshin, R., Brady, N., Mondal, J., Atashova, S., Zharmukhamedov, S. K., ... & Bruce, B. D. 2018. Biohybrid solar cells: Fundamentals, progress, and challenges. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 134-156.

[18] CARDONA, Tanai. Reconstructing the origin of oxygenic photosynthesis: do assembly and photoactivation recapitulate evolution?. Frontiers in plant science, 2016, 7: 257.

[19] Raven, J. A., & Allen, J. F. 2003. Genomics and chloroplast evolution: what did cyanobacteria do for plants?. Genome biology, 4(3), 209.

[20] Schmitt, Franz-Josef & Maksimov, Eugene & Junghans, Cornelia & Weißenborn, Jörn & Hätti, Patrick & Paschenko, Vladimir & Allakhverdiev, Suleyman & Friedrich, Thomas. (2013). Structural Organization and Dynamic Processes in Protein Complexes Determined by Multiparameter Imaging.

[21] Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annual Review of Biochemistry 84:659-83 (2015). doi:10.1146/annurev-biochem-092914-041942

[22] Andreasson, L. E. & Vanngard, T. Electron Transport in Photosystems I and II. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 379-411 (1988). doi:10.1146/annurev.pp.39.060188.002115.

[23] Blankenship, R. E. Early Evolution of Photosynthesis. Plant Physiol. 154, 434–438 (2010)

[24] Amunts, A. & Nelson, N. Plant photosystem I design in the light of evolution. Structure 17, 637–650 (2009).

[25] Golbeck, J. H. Structure and Function of Photosystem I. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 293–324 (1992).

[26] Boekema, E. J. et al. Refined analysis of the trimeric structure of the isolated Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. BBA - Bioenerg. 974, 81–87 (1989)

[27] S. Jeon and P. V Braun, “Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles”, Chem. Mater., no. 15, pp. 1256-1263, 2003.

[28] Jordan, P. et al. Three-dimensional structure of cyanobaoterial photosystem I at 2.5 Å resolution. Nature 411, 909-917 (2001). doi:10.1038/35082000

[29] Zhao, L. S. et al. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat. Plants 6:869-82 (2020). doi:10.1038/s41477-020-0694-3.

[30] Şener, M. K. et al. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys. J. 89, 1630–1642 (2005).

[31] Xiong, J. & Bauer, C. E. Complex evolution of photosynthesis. Annual Review of Plant Biology 53, 503-521 (2002). doi:10.1146/annurev.arplant.53.100301.135212.

[32] Nelson, N. & Ben-Shem, A. The structure of photosystem I and evolution of photosynthesis. BioEssays 27, 914–922 (2005)

[33] Brettel, K. (1997). Electron transfer and arrangement of the redox cofactors in photosystem I. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1318(3), 322-373.

[34] Şener, M., Strümpfer, J., Hsin, J., Chandler, D., Scheuring, S., Hunter, C. N., & Schulten, K. (2011). Förster energy transfer theory as reflected in the structures of photosynthetic light‐harvesting systems. ChemPhysChem, 12(3), 518-531.

[35] Fromme, P., Melkozernov, A., Jordan, P., & Krauss, N. (2003). Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS letters, 555(1), 40-44.

[36] Croce, R., & van Amerongen, H. (2013). Light-harvesting in photosystem I. Photosynthesis Research, 116(2-3), 153-166..

[37] Kennis, J. T., Gobets, B., van Stokkum, I. H., Dekker, J. P., van Grondelle, R., & Fleming, G. R. (2001). Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. The Journal of Physical Chemistry B, 105(19), 4485-4494.

[38] Pålsson, L. O., Flemming, C., Gobets, B., van Grondelle, R., Dekker, J. P., & Schlodder, E. (1998). Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long- wavelength antenna chlorophylls of Synechococcus elongatus. Biophysical journal, 74(5), 2611-2622.

[39] Netzer-El, S. Y., Caspy, I. & Nelson, N. Crystal structure of photosystem i monomer from synechocystis PCC 6803. Front. Plant Sci. 9, (2019)

[40] Kubota-Kawai, H. et al. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem i complex. Nat. Plants 4, 218–224 (2018).

[41] Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta - Bioenerg. 1859, 645–654 (2018).

[42] Gisriel, C. et al. The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Sci. Adv. 6, eaay6415 (2020)

[43] Kato, K. et al. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat. Commun. 10, 1-9 (2020). doi:10.1038/s41467-019- 13898-5

[44] Zheng, L. et al. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nat. Plants 14, 331- 332 (2019). doi:10.1038/s41477-019-0525-6.

[45] Chen, M. et al. Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly. Nat. Plants 6, 314–320 (2020).

[46] Kato, K. et al. Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat. Commun. 10, 1-9 (2019). doi:10.1038/s41467-019-12942-8.

[47] Li, M., Semchonok, D. A., Boekema, E. J. & Brucea, B. D. Characterization and evolution of tetrameric Photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell 26, 1230-1245 (2014). doi:10.1105/tpc.113.120782

[48] Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014)

[49] Herzik, M. A., Wu, M. & Lander, G. C. Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat. Methods 14, 1075–1078 (2017).

[50] Pålsson, L. O., Dekker, J. P., Schlodder, E., Monshouwer, R. & Van Grondelle, R. Polarized site-selective fluorescence spectroscopy of the long- wavelength emitting chlorophylls in isolated Photosystem I particles of Synechococcus elongatus. Photosynth. Res. 48, 239–246 (1996).

[51] Pålsson, L. O. et al. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys. J. 74, 2611–2622 (1998).

[52] Karapetyan, N. V., Holzwarth, A. R. & Rögner, M. The photosystem I trimer of cyanobacteria: Molecular organization, excitation dynamics and physiological significance. FEBS Letters vol. 460 395–400 (1999)

[53] Rätsep, M., Johnson, T. W., Chitnis, P. R. & Small, G. J. The Red-Absorbing Chlorophyll a Antenna States of Photosystem I: A Hole-Burning Study of Synechocystis sp. PCC 6803 and Its Mutants. J. Phys. Chem. B 104, 836– 847 (2000)

[54] Cometta, A. et al. Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers. Biophys. J. 79, 3235–3243 (2000)

[55] Brecht, M., Radics, V., Nieder, J. B., Studier, H. & Bitt, R. Red antenna states of photosystem I from Synechocystis PCC 6803. Biochemistry 47, 5536–5543 (2008)

[56] Skandary, S., Konrad, A., Hussels, M., Meixner, A. J. & Brecht, M. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. J. Phys. Chem. B 119, 13888–13896 (2015)

[57] Riley, K. J., Reinot, T., Jankowiak, R., Fromme, P. & Zazubovich, V. Red antenna states of photosystem i from cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus: Single-complex spectroscopy and spectral hole-burning study. J. Phys. Chem. B 111, 286–292 (2007).

[58] Vaitekonis, S., Trinkunas, G. & Valkunas, L. Red chlorophylls in the exciton model of Photosystem I. Photosynthesis Research 86, 185-201 (2005). doi:10.1007/s11120-005-2747-x.

[59] Behrendt, L. et al. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME J. 9, 2108–2111 (2015)

[60] Gisriel, C. J., Wang, J., Brudvig, G. W., & Bryant, D. A.Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll- containing proteins. Communications Biology, 3, 1-10 (2020).

[61] Yamaoka, T., Satoh, K., and Katoh, S. 1978, Photosynthetic activities of a thermophilic blue-green alga, Plant Cell Physiol., 19, 943–954.

[62] Honda, D., Yokota, A., and Sugiyama, J. 1999, Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains, J. Mol. Evol., 48, 723–739

[63] Zouni, A., Witt, H. T., Kern, J. et al. 2001, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution, Nature, 409, 739–743.

[64] Sonoike, K. and Katoh, S. 1989, Simple estimation of the differential absorption coefficient of P-700 in detergent-treated preparations, Biochim. Biophys. Acta, 976, 210–213.

[65] Katoh, H., Itoh, S., Shen, J. R., and Ikeuchi, M. 2001, Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1, Plant Cell Physiol., 42, 599–607

[66] Nakamura, Y., Kaneko, T., Sato, S., Ikeuchi, M., Katoh, H., Sasamoto, S., ... & Kishida, Y. (2002). Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA research, 9(4), 123-130.

[67] Onai, K., Morishita, M., Itoh, S., Okamoto, K., & Ishiura, M. (2004). Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range. Journal of bacteriology, 186(15), 4972-4977.

[68] Los, D. A., & Murata, N. (2002). Sensing and response to low temperature in cyanobacteria (Vol. 3, pp. 139-153). Elsevier Press: Amsterdam, Holland.

[69] Schuergers, N., Lenn, T., Kampmann, R., Meissner, M. V., Esteves, T., Temerinac-Ott, M., ... & Wilde, A. (2016). Cyanobacteria use micro-optics to sense light direction. Elife, 5, e12620.

[70] Masoumi, Ava & Heinemann, Ilka & Rohde, Manfred & Koch, Michael & Jahn, Martina & Jahn, Dieter. (2009). Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology (Reading, England). 154. 3707-14. 10.1099/mic.0.2008/018705-0.

[71] Collins, A. M., Liberton, M., Jones, H. D., Garcia, O. F., Pakrasi, H. B., & Timlin, J. A. (2012). Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. Plant physiology, 158(4), 1600-1609..

[72] Vothknecht, U. C., & Westhoff, P. (2001). Biogenesis and origin of thylakoid membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1541(1-2), 91-101.

[73] Zhao, L. S., Huokko, T., Wilson, S., Simpson, D. M., Wang, Q., Ruban, A. V., ... & Liu, L. N. (2020). Structural variability, coordination and adaptation of a native photosynthetic machinery. Nature Plants, 6(7), 869-882.

[74] Wada, H., & Murata, N. (1998). Membrane lipids in cyanobacteria. In Lipids in photosynthesis: structure, function and genetics (pp. 65-81). Springer, Dordrecht.

[75] Rögner, M., 1990. Purification of membrane protein complexes isolated from a cyanobacterial thylakoid membrane by high-performance liquid chromatography. Journal of Chromatography A, 512, pp.219-226.

[76] Chitnis, V. P. & Chitnis, P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 336, 330–334 (1993).

[77] Jekow, P. et al. Crystallization of intact and subunit L-deficient monomers from synechocystis PCC 6803 photosystem I. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 51, 195-199 (1996). doi:10.1515/znc-1996-3-410.

[78] Jekow, P., Fromme, P., Witt, H. T. & Saenger, W. Photosystem I from Synechococcus elongatus: preparation and crystallization of monomers with varying subunit compositions. BBA - Bioenerg. 1229, 115–120 (1995).

[79] El-Mohsnawy, E. et al. Structure and function of intact photosystem 1 monomers from the cyanobacterium thermosynechococcus elongatus. Biochemistry 49, 4740–4751 (2010)

[80] Frank, A. (2018). Efficient purification and comparative characterization of the cyanobacterial photosystem I monomer. [Master's thesis] Ruhr University Bochum

[81] Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610), 662-666.

[82] Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature, 318(6047), 618-624.

[83] Newby, Z. E., D O'Connell, J., Gruswitz, F., Hays, F. A., Harries, W. E., Harwood, I. M., ... & Stroud, R. M. (2009). A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nature protocols, 4(5), 619-637.

[84] Marchesi, V. T. (1985). Stabilizing infrastructure of cell membranes. Annual review of cell biology, 1(1), 531-561.

[85] Gerle, C. (2019). Essay on Biomembrane Structure. The Journal of membrane biology, 252(2-3), 115-130.

[86] Jan, B. F. N. (1993). Polymer–micelle interactions: physical organic aspects. Chemical Society Reviews, 22(2), 85-92.

[87] Womack, M. D., Kendall, D. A., & MacDonald, R. C. (1983). Detergent effects on enzyme activity and solubilization of lipid bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 733(2), 210-215.

[88] Chayen, N. E., & Saridakis, E. (2008). Protein crystallization: from purified protein to diffraction-quality crystal. Nature methods, 5(2), 147-153.

[89] Boistelle, R., & Astier, J. P. (1988). Crystallization mechanisms in solution. Journal of Crystal Growth, 90(1-3), 14-30.

[90] Gisriel, C., Coe, J., Letrun, R., Yefanov, O. M., Luna-Chavez, C., Stander, N. E., ... & Grant, T. D. (2019). Membrane protein megahertz crystallography at the European XFEL. Nature communications, 10(1), 1- 11.

[91] Ben-Shem, A., Frolow, F., & Nelson, N. (2003). Crystal structure of plant photosystem I. Nature, 426(6967), 630-635.

[92] Mazor, Y., Nataf, D., Toporik, H., & Nelson, N. (2014). Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. Elife, 3, e01496.

[93] Brunger, A. T., Adams, P. D., Fromme, P., Fromme, R., Levitt, M., & Schröder, G. F. (2012). Improving the accuracy of macromolecular structure refinement at 7 Å resolution. Structure, 20(6), 957-966.

[94] Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., ... & Doak, R. B. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73-77.

[95] Antoshvili, M., Caspy, I., Hippler, M., & Nelson, N. (2019). Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynthesis research, 139(1-3), 499-508.

[96] Mazor, Y., Borovikova, A., & Nelson, N. (2015). The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife, 4, e07433.

[97] Amunts, A., Drory, O., & Nelson, N. (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature, 447(7140), 58-63.

[98] Mazor, Y., Borovikova, A., Caspy, I., & Nelson, N. (2017). Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature plants, 3(3), 1-9.

[99] Qin, X., Suga, M., Kuang, T., & Shen, J. R. (2015). Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science, 348(6238), 989-995.

[100] Hope, H., Frolow, F., Von Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., ... & Yonath, A. (1989). Cryocrystallography of ribosomal particles. Acta Crystallographica Section B: Structural Science, 45(2), 190-199.

[101] Ochi, T., Bolanos-Garcia, V. M., Stojanoff, V., & Moreno, A. (2009). Perspectives on protein crystallisation. Progress in Biophysics and Molecular Biology, 101(1-3), 56-63.

[102] Fromme, P. (2003). Crystallization of photosystem I. Methods and results in crystallization of membrane proteins, 147-173.

[103] W. Kabsch, XDS. Acta Crystallogr. D 66, 125–132 (2010)

[104] Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., ... & Wilson, K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica Section D: Biological Crystallography, 67(4), 235-242.

[105] Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66(4), 486-501.

[106] R. A. Nicholls, F. Long and G. N. Murshudov, Low Resolution Refinement Tools in REFMAC5. Acta Cryst. D 68. 404-417 (2012)

[107] Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

[108] Dühring, U., Ossenbühl, F., & Wilde, A. (2007). Late assembly steps and dynamics of the cyanobacterial photosystem I. Journal of Biological Chemistry, 282(15), 10915-10921.

[109] Hauer, F. et al. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. Structure 23,1769-1775 (2015). doi:10.1016/j.str.2015.06.029.

[110] Shen, P. S. (2018). The 2017 Nobel Prize in Chemistry: cryo-EM comes of age. Analytical and bioanalytical chemistry, 410(8), 2053-2057.

[111] Shampo, M. A., & Kyle, R. A. (1994, June). Sir Aaron Klug—Nobel Prize Winner for Chemistry. In Mayo Clinic Proceedings (Vol. 69, No. 6, p. 556). Elsevier.

[112] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235-242.

[113] Crowther, R. A., DeRosier, D. J., & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 317(1530), 319-340.

[114] Yin, C. C. (2018). Structural biology revolution led by technical breakthroughs in cryo-electron microscopy. Chinese Physics B, 27(5), 058703.

[115] De Rosier, D. J., & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature, 217(5124), 130-134.

[116] Lyumkis, D. (2019). Challenges and opportunities in cryo-EM single-particle analysis. Journal of Biological Chemistry, 294(13), 5181-5197.

[117] De la Rosa-Trevín, J. M., Quintana, A., Del Cano, L., Zaldivar, A., Foche, I., Gutierrez, J., ... & Vargas, J. (2016). Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. Journal of structural biology, 195(1), 93-99.

[118] Benjin, X., & Ling, L. (2020). Developments, applications, and prospects of cryo‐electron microscopy. Protein Science, 29(4), 872-882..

[119] Russo, C. J., & Passmore, L. A. (2016). Progress towards an optimal specimen support for electron cryomicroscopy. Current opinion in structural biology, 37, 81-89.

[120] Drulyte, I., Johnson, R. M., Hesketh, E. L., Hurdiss, D. L., Scarff, C. A., Porav, S. A., ... & Thompson, R. F. (2018). Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallographica Section D: Structural Biology, 74(6), 560-571.

[121] Fernandez, J. J., Luque, D., Caston, J. R., & Carrascosa, J. L. (2008). Sharpening high resolution information in single particle electron cryomicroscopy. Journal of structural biology, 164(1), 170-175.

[122] Rosenthal, P. B., & Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. Journal of molecular biology, 333(4), 721-745.

[123] Yip, K. M., Fischer, N., Paknia, E., Chari, A., & Stark, H. (2020). Breaking the next Cryo-EM resolution barrier-Atomic resolution determination of proteins!. BioRxiv.

[124] Frederik, P. M., Stuart, M. C. A., Bomans, P. H. H., Busing, W. M., Burger, K. N. J., & Verkleij, A. J. (1991). Perspective and limitations of cryo ‐ electron microscopy: From model systems to biological specimens. Journal of microscopy, 161(2), 253-262.

[125] Merk, A., Fukumura, T., Zhu, X., Darling, J. E., Grisshammer, R., Ognjenovic, J., & Subramaniam, S. (2020). 1.8 Å resolution structure of β- galactosidase with a 200 kV CRYO ARM electron microscope. IUCrJ, 7(4).

[126] Zhang, J. et al. JADAS: A customizable automated data acquisition system and its application to ice-embedded single particles. J. Struct. Biol. 165, 1– 9 (2009).

[127] Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, p.e42166 (2018). doi:10.7554/eLife.42166.

[128] Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290-296 (2017).

[129] Pettersen E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004)

[130] Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods 14, 331-332 (2017). doi:10.1038/nmeth.4193.

[131] Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

[132] Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

[133] Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. (2019) doi:10.1107/S2059798319011471.

[134] Smart, O.S., Horský, V., Gore, S., Svobodová Vařeková, R., Bendová, V., Kleywegt, G.J. and Velankar, S. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallographica Section D: Structural Biology, 74 (3), 228-236 (2018).

[135] Moriarty, N. W. & Adams, P. D. Iron–sulfur clusters have no right angles. Acta Crystallogr. Sect. D Struct. Biol. 75, 16–20 (2019).

[136] O. S. Smart, T. O. Womack, A. Sharff, C. Flensburg, P. Keller, W. Paciorek, C. Vonrhein, and G. Bricogne.(2011) grade, version] /1.2.19/ Cambridge, United Kingdom, Global Phasing Ltd.,http://www.globalphasing.com

[137] Suga, M., Ozawa, S. I., Yoshida-Motomura, K., Akita, F., Miyazaki, N., & Takahashi, Y. (2019). Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nature plants, 5(6), 626-636.

[138] E.Krissinel and K.Henrick (2004), Acta Cryst. D60, 2256-2268 Secondary- structure matching (SSM), a new tool for fast protein structure alignment in three dimensions

[139] Schluchter, W. M., Shen, G., Zhao, J. & Bryant, D. A. Characterization of psal and psaL Mutants of Synechococcus sp. Strain PCC 7002: A New Model for State Transitions in Cyanobacteria. Photochem. Photobiol. 64, 53–66 (1996)

[140] Franck, J. (1958). Remarks on the long-wave-length limits of photosynthesis and chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 44(9), 941.

[141] Croce, R., & van Amerongen, H. (2020). Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science, 369(6506).

[142] Elli, A. F. et al. Red pool chlorophylls of photosystem I of the cyanobacterium Thermosynechococcus elongatus: A single-molecule study. Biochemistry 45, 1454–1458 (2006).

[143] Gobets, B. et al. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model. Biophys. J. 81, 407–424 (2001)

[144] Damjanović, A., Vaswani, H. M., Fromme, P. & Fleming, G. R. Chlorophyll excitations in photosystem I of Synechococcus elongatus. J. Phys. Chem. B 106, 10251–10262 (2002).

[145] Sener, M. K. et al. Robustness and optimality of light harvesting in cyanobacterial photosystem I. J. Phys. Chem. B 106, 7948–7960 (2002).

[146] Byrdin, M. et al. Light harvesting in photosystem I: Modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus. Biophys. J. 83, 433–457 (2002).

[147] Yang, M., Damjanović, A., Vaswani, H. M. & Fleming, G. R. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J. 85, 140-158 (2003). doi:10.1016/S0006-3495(03)74461-0.

[148] Gobets, B., van Stokkum, I. H. M., van Mourik, F., Dekker, J. P. & van Grondelle, R. Excitation Wavelength Dependence of the Fluorescence Kinetics in Photosystem I Particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys. J. 85, 3883–3898 (2003).

[149] Brüggemann, B., Sznee, K., Novoderezhkin, V., Van Grondelle, R. & May, V. From structure to dynamics: Modeling exciton dynamics in the photosynthetic antenna PS1. J. Phys. Chem. B 108, 13536–13546 (2004)

[150] Balaban, T. S. Are syn-ligated (bacterio)chlorophyll dimers energetic traps in light-harvesting systems? FEBS Lett. 545, 97–102 (2003)

[151] Schlodder, E., Shubin, V. V., El-Mohsnawy, E., Roegner, M. & Karapetyan, N. V. Steady-state and transient polarized absorption spectroscopy of photosytem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. Biochim. Biophys. Acta - Bioenerg. 1767, 732–741 (2007).

[152] Shibata, Y., Yamagishi, A., Kawamoto, S., Noji, T. & Itoh, S. Kinetically distinct three red chlorophylls in photosystem i of thermosynechococcus elongatus revealed by femtosecond time-resolved fluorescence spectroscopy at 15 K. J. Phys. Chem. B 114, 2954–2963 (2010).

[153] Pishchalnikov, R. Y., Shubin, V. V. & Razjivin, A. P. Spectral differences between monomers and trimers of photosystem I depend on the interaction between peripheral chlorophylls of neighboring monomers in trimer. Phys. Wave Phenom. 25, 185-195 (2017). doi:10.3103/S1541308X17030050.

[154] Werst, M., Jia, Y., Mets, L. & Fleming, G. R. Energy transfer and trapping in the photosystem I core antenna. A temperature study. Biophys. J. 61, 868– 878 (1992). doi:10.1016/S0006-3495(92)81894-5.

[155] Laible, P. D., Zipfel, W. & Owens, T. G. Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium. Biophys. J. 66, 844–860 (1994).

[156] Klug, D. R., Giorgi, L. B., Crystall, B., Barber, J., & Porter, G. (1989). Energy transfer to low energy chlorophyll species prior to trapping by P700 and subsequent electron transfer. Photosynthesis research, 22(3), 277-284.

[157] Nelson, N., & Yocum, C. F. (2006). Structure and function of photosystems I and II. Annu. Rev. Plant Biol., 57, 521-565.

[158] Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., ... & Stehlik, D. (2004). Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry, 43(16), 4741-4754.

[159] Xu, W., Chitnis, P. R., Valieva, A., Van der Est, A., Brettel, K., Guergova- Kuras, M., ... & Zybailov, B. (2003). Electron transfer in cyanobacterial photosystem I II. Determination of forward electron transfer rates of site- directed mutants in a putative electron transfer pathway from A0 through A1 to FX. Journal of Biological Chemistry, 278(30), 27876-27887.

[160] Xu, W., Chitnis, P., Valieva, A., Van der Est, A., Pushkar, Y. N., Krzystyniak, M., ... & Zybailov, B. (2003). Electron Transfer in Cyanobacterial Photosystem I I. PHYSIOLOGICAL AND SPECTROSCOPIC CHARACTERIZATION OF SITE-DIRECTED MUTANTS IN A PUTATIVE ELECTRON TRANSFER PATHWAY FROM A0 THROUGH A1 TO FX. Journal of Biological Chemistry, 278(30), 27864-27875.

[161] Poluektov, O. G., Paschenko, S. V., Utschig, L. M., Lakshmi, K. V., & Thurnauer, M. C. (2005). Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. Journal of the American Chemical Society, 127(34), 11910-11911.

[162] Kouřil, R., Yeremenko, N., D'Haene, S., Oostergetel, G. T., Matthijs, H. C., Dekker, J. P., & Boekema, E. J. (2005). Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(3), 262-266.

[163] Toporik, H., Li, J., Williams, D., Chiu, P. L., & Mazor, Y. (2019). The structure of the stress-induced photosystem I–IsiA antenna supercomplex. Nature Structural & Molecular Biology, 26(6), 443-449.

[164] Pishchalnikov, R. Y., Shubin, V. V., & Razjivin, A. P. (2020). The role of vibronic modes in formation of red antenna states of cyanobacterial PSI. Photosynthesis Research, 1-12.

[165] Frank, J. & Gonzalez, R. L. Structure and Dynamics of a Processive Brownian Motor: The Translating Ribosome. Annu. Rev. Biochem. 79, 381– 412 (2010).

[166] Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: An electrochemical transducer with rotatory mechanics. Trends in Biochemical Sciences (1997) doi:10.1016/S0968-0004(97)01129-8.

[167] Wittig, I., Braun, H. P., & Schägger, H. (2006). Blue native PAGE. Nature protocols, 1(1), 418.

[168] Schägger, H., & Von Jagow, G. (1987). Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry, 166(2), 368-379.

[169] Karapetyan, N. V., Bolychevtseva, Y. V., Yurina, N. P., Terekhova, I. V., Shubin, V. V., & Brecht, M. (2014). Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. Biochemistry (Moscow), 79(3), 213-220.

[170] Seddon, A. M., Curnow, P., & Booth, P. J. (2004). Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1666(1-2), 105-117.

[171] Timmins, P., Pebay-Peyroula, E., & Welte, W. (1994). Detergent organisation in solutions and in crystals of membrane proteins. Biophysical chemistry, 53(1-2), 27-36.

[172] De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of crystal nucleation and growth. Reviews in mineralogy and geochemistry, 54(1), 57-93.

[173] Sun, C., & Xue, D. (2017). Crystallization: A phase transition process driving by chemical potential decrease. Journal of Crystal Growth, 470, 27-32.

[174] Fujisawa, T., Narikawa, R., Maeda, S. I., Watanabe, S., Kanesaki, Y., Kobayashi, K., ... & Suzuki, E. (2017). CyanoBase: a large-scale update on its 20th anniversary. Nucleic acids research, 45(D1), D551-D554.

[175] Kantardjieff, K. A., & Rupp, B. (2003). Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein– nucleic acid complex crystals. Protein Science, 12(9), 1865-1871.

[176] Abramavicius, D. & Mukamel, S. Exciton delocalization and transport in photosystem I of cyanobacteria synechococcus elongates: Simulation study of coherent two-dimensional optical signals. J. Phys. Chem. B 113, 6097-108 (2009). doi:10.1021/jp811339p.

[177] Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720-731.

[178] Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis, S., Brown, P. M., ... & Yu, L. (2020). Single-particle cryo-EM at atomic resolution. BioRxiv.

[179] Yip, K. M., Fischer, N., Paknia, E., Chari, A., & Stark, H. (2020). Atomic- resolution protein structure determination by cryo-EM. Nature, 1-5.

[180] Santabarbara, S., Kuprov, I., Poluektov, O., Casal, A., Russell, C. A., Purton, S., & Evans, M. C. (2010). Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model. The Journal of Physical Chemistry B, 114(46), 15158-15171.

[181] Kölsch, A., C. Radon, M. Golub, A. Baumert, J. Bürger, T. Mielke, F. Lisdat et al. "Current limits of structural biology: The transient interaction between cytochrome c6 and photosystem I." Current Research in Structural Biology 2 (2020): 171-179.

[182] Kruip, Jochen, Navassard V. Karapetyan, Irina V. Terekhova, and Matthias Rögner. "In vitro oligomerization of a membrane protein complex liposome-based reconstitution of trimeric photosystem I from isolated monomers." Journal of Biological Chemistry 274, no. 26 (1999): 18181-18188.

[183] Domonkos, Ildikó, Przemyslaw Malec, Anna Sallai, László Kovács, Kunihiro Itoh, Gaozhong Shen, Bettina Ughy et al. "Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center." Plant physiology 134, no. 4 (2004): 1471-1478.

[184] Karapetyan, Navassard V., Eberhard Schlodder, Rienk van Grondelle, and Jan P. Dekker. "The long wavelength chlorophylls of photosystem I." In Photosystem I, pp. 177-192. Springer, Dordrecht, 2006.

[185] Liu, Ji-Feng. "Theoretical reconsideration on the hydrogen bonding and coordination interactions of chlorophyll a in aqueous solution." Journal of Porphyrins and Phthalocyanines 15, no. 03 (2011): 202-210.

[186] Toporik, H., Khmelnitskiy, A., Dobson, Z., Riddle, R., Williams, D., Lin, S.,... & Mazor, Y. (2020). The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nature communications, 11(1), 1-13.

[187] Pintilie, G., Zhang, K., Su, Z., Li, S., Schmid, M.F. and Chiu, W., Measurement of atom resolvability in cryo-EM maps with Q-scores. Nature methods, 17 (3), 328-334 (2020).113, 6097-108 (2009). doi:10.1021/jp811339p.

[188] Nord, M., Webster, R. W., Paton, K. A., McVitie, S., McGrouther, D., MacLaren, I., & Paterson, G. W. (2020). Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing, and Storage. Microscopy and Microanalysis, 26(4), 653-666.

[189] Liao, M., Cao, E., Julius, D., & Cheng, Y. (2014). Single particle electron cryo-microscopy of a mammalian ion channel. Current opinion in structural biology, 27, 1-7.

[190] Baker, M. R., Fan, G., & Serysheva, I. I. (2015). Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. European journal of translational myology, 25(1), 35.

[191] Chen, J., Noble, A. J., Kang, J. Y., & Darst, S. A. (2019). Eliminating effects of particle adsorption to the air/water interface in single-particle cryo- electron microscopy: Bacterial RNA polymerase and CHAPSO. Journal of structural biology: X, 1, 100005.

[192] Chae, P. S. et al. A new class of amphiphiles bearing rigid hydrophobicgroups for solubilization and stabilization of membrane proteins. Chem.- A Eur. J. 18, 9485–9490 (2012).

[193] Mazor, Y., Borovikova A., Greenberg I., Nelson N., Crystal structure of plant Photosystem I at 3 Angstrom resolution, PDB ID: 4RKU, (2014) doi: 10.2210/pdb4rku/pdb

[194] J. Appl. Cryst. (2007). 40, 658-674. Phaser crystallographic software. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., & Read, R.J.

[195] Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., ... & Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 67(4), 355-367.

[196] Klug, A., & Crowther, R. A. (1972). Three-dimensional image reconstruction from the viewpoint of information theory. Nature, 238(5365), 435-440.

[197] Retrieval of Crystallographically-Derived Molecular Geometry Information, I. J. Bruno, J. C. Cole, M. Kessler, Jie Luo, W. D. S. Motherwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris and A. G. Orpen, J. Chem. Inf. Comput. Sci., 44, 2133-2144, 2004 [DOI: 10.1021/ci049780b]

[198] Engel, B. D., Schaffer, M., Cuellar, L. K., Villa, E., Plitzko, J. M., & Baumeister, W. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. Elife, 4, e04889.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る