リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「貴金属クラスターの異種接合界面を介した触媒機能に関する理論的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

貴金属クラスターの異種接合界面を介した触媒機能に関する理論的研究

林, 亮秀 大阪大学 DOI:10.18910/82020

2021.03.24

概要

金属と金属以外の物質が接合したヘテロ接合を持つ触媒は通常の金属触媒が持たない特異な性質を発現する。その代表的な例としてAuとNiOが接合した系であるAu@NiOコアシェル触媒と、PtとHが接合した系であるPt触媒を研究した。

Au@NiOコアシェル触媒はAuをNiOのシェルで包み込んだ構造をした触媒であるが、この触媒の表面のNiOは通常のNiOよりもNi:O比が酸素過剰になっていることが知られており、この酸素過剰表面が触媒活性に大きく寄与していることが知られている。また、本触媒用いた反応は選択率が高く、溶媒を酸化する反応があまり進行しない事が知られている。しかし、その特異な表面状態が何故発生し触媒反応にどのような寄与があるのか、そしてなぜ高い選択率を持つのかの原因は明らかでなかった。そこでNiO/Au接合スラブを用いてAu@NiOコアシェル触媒をモデル化した密度汎関数理論(DFT)による解析を行い、NiO/Auの表面が酸素過剰になりやすい原因と役割を解析した。また、このスラブモデル上でAu@NiOコアシェル触媒上で起こる直接酸化的エステル化反応に関して反応機構解析を行い、本触媒上で基質が高い選択率で酸化される機構を調べた。結果、Ni空孔の上にある表面格子酸素は他の格子酸素より強い塩基点となり、この強塩基点が基質の吸着点として機能する事で基質を捕捉し、さらに基質から水素を引き抜く反応の活性化障壁を低下させることが明らかになった。また、本触媒上での溶媒の酸化反応は基質の酸化反応と比べると不安定な中間体を経由するが明らかになった。

また、Pt上でのエチレン水素化反応中のPt表面は、水素で覆われていることによって、通常のPt表面とは異なる表面状態にあることが知られている。反応速度論的には触媒表面はオレフィンで被覆されており、水素では被覆されていないように見えるが、詳細な解析を行うと表面は水素で覆われている。このような表面を解析するには水素の吸着ギブズエネルギーを良い精度で見積もる必要があるが、調和振動子近似でどこまで吸着ギブズエネルギーを適切に見積もる事が出来るかは明らかでなかった。調和振動近似の妥当性の検証には動力学計算から得られた吸着ギブズエネルギーとの比較が必要であるが、動力学計算の実行には高速で高精度に分子のエネルギーを記述出来るポテンシャルが必要である。そこでPt上でのエチレンと水素の反応を記述出来るニューラルネット型のポテンシャルを作成し、作成したポテンシャルを用いて水素で被覆されたPt表面上に関する経路積分動力学計算とメタダイナミクスを行った。経路積分動力学計算の結果より、Pt表面の水素原子は古典近似する事で、量子効果を取り込んだ場合より調和振動子から外れた振る舞いをする事が明らかになった。また、メタダイナミクスによる吸着ギブズエネルギーは構造最適化による一点計算から求めた吸着エネルギーに並進・回転・振動・配置の寄与を加えた吸着ギブズエネルギーと良い一致を示した。従って古典近似によって調和振動子から外れた振る舞いをしている場合でさえ、水素高被覆率のPt表面への水素の吸着ギブズエネルギーは調和振動子近似でほとんど記述することが出来る事が示された。さらにエチレンと水素の共吸着状態に関しても同様に水素の吸着ギブズエネルギーの計算を行った。エチレンと水素の共吸着状態のとりうる配置全てを顕に考慮に入れて計算した吸着ギブズエネルギーはメタダイナミクスの結果と良く一致したため、水素の吸着エネルギーは調和振動子近似の範囲で記述出来る事が明らかになった。また、一点計算のエネルギーに加えて並進・回転・振動のギブズエネルギーを考慮し、配置の自由エネルギーを考慮に入れずに吸着ギブズエネルギーを見積もると、本来より少し安定な値を算出する事が明らかになった。

参考文献

[1] Ken Suzuki, Tatsuo Yamaguchi, Ken Matsushita, Chihiro Iitsuka, Junichi Miura, Takayuki Akaogi,and Hiroshi Ishida. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure. ACS Catalysis, Vol. 3, No. 8, pp. 1845–1849, 2013.

[2] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, Inc., Mineola, first edition, 1996.

[3] R.G. パール, W. ヤング, Robert G. Parr, Weitao Yang. 原子・分子の密度汎関数法. シュプリンガーフェアラーク, 単行本, 12 1996.

[4] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, Vol. 136, No. 3B, pp.B864–B871, 11 1964.

[5] M. Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proceedings of the National Academy of Sciences, Vol. 76, No. 12, pp. 6062–6065, 12 1979.

[6] T. L. Gilbert. Hohenberg-Kohn theorem for nonlocal external potentials. Physical Review B, Vol. 12,No. 6, pp. 2111–2120, 1975.

[7] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects.Physical Review, Vol. 140, No. 4A, pp. A1133–A1138, 11 1965.

[8] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, Vol. 45, No. 23, pp. 13244–13249, 6 1992.

[9] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, Vol. 77, No. 18, pp. 3865–3868, 10 1996.

[10] Felix Bloch. Uber die Quantenmechanik der Elektronen in Kristallgittern. ¨ Zeitschrift f¨ur Physik,Vol. 52, No. 7-8, pp. 555–600, 1929.

[11] P E Bl¨ochl. Projector augmented-wave method. Physical Review B, Vol. 50, No. 24, pp. 17953–17979,1994.

[12] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method.Physical Review B, Vol. 59, No. 3, pp. 1758–1775, 1 1999.

[13] Peter E. Bl¨ochl, Clemens J. F¨orst, and Johannes Schimpl. Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bulletin of Materials Science, Vol. 26, No. 1,pp. 33–41, 2003.

[14] Dezhang Li, Xu Han, Yichen Chai, Cong Wang, Zhijun Zhang, Zifei Chen, Jian Liu, and Jiushu Shao. Stationary state distribution and efficiency analysis of the Langevin equation via real or 113 virtual dynamics. Journal of Chemical Physics, Vol. 147, No. 18, 2017.

[15] Zhijun Zhang, Xinzijian Liu, Kangyu Yan, Mark E. Tuckerman, and Jian Liu. Unified Efficient Thermostat Scheme for the Canonical Ensemble with Holonomic or Isokinetic Constraints via Molecular Dynamics. Journal of Physical Chemistry A, Vol. 123, No. 28, pp. 6056–6079, 2019.

[16] Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 20, pp. 12562–12566, 2002.

[17] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, Vol. 100, No. 2, pp.1–4, 2008.

[18] Davide Branduardi, Giovanni Bussi, and Michele Parrinello. Metadynamics with adaptive gaussians.Journal of Chemical Theory and Computation, Vol. 8, No. 7, pp. 2247–2254, 2012.

[19] Pratyush Tiwary and Michele Parrinello. A time-independent free energy estimator for metadynamics. Journal of Physical Chemistry B, Vol. 119, No. 3, pp. 736–742, 2015.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, second edition, 2006.

[21] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, USA, second edition, 1992.

[22] Graeme Jonsson and Hannes Henkelman. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, Vol.113, No. 22, pp. 9978–9985, 2000.

[23] Daniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding minimum energy paths. Journal of Chemical Physics, Vol. 128, No. 13, pp. 1–10, 2008.

[24] Daniel Sheppard and Graeme Henkelman. Paths to which the nudged elastic band converges. Journal of Computational Chemistry, Vol. 32, No. 8, pp. 1769–1771, 6 2011.

[25] Andrew R. Barron. Approximation bounds for superpositions of a sigmoidal function. IEEE International Symposium on Information Theory - Proceedings, Vol. 39, No. 3, p. 85, 1991.

[26] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In J. Shawe-Taylor,R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, Vol. 24, pp. 666–674. Curran Associates, Inc., 2011.

[27] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp.1–15, 2015.

[28] J. S. Smith, O. Isayev, and A. E. Roitberg. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chemical Science, Vol. 8, No. 4, pp. 3192–3203,2017.

[29] H S Seung, M Oppert, and H Sompolinsky. Query & Committee. pp. 287–294, 1992.

[30] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E. Roitberg. Less is more: Sampling chemical space with active learning. Journal of Chemical Physics, Vol. 148, No. 24,2018.

[31] Chao Liu, Jing Wang, Lingkui Meng, Yi Deng, Yao Li, and Aiwen Lei. Palladium-catalyzed aerobic 114 oxidative direct esterification of alcohols. Angewandte Chemie - International Edition, Vol. 50,No. 22, pp. 5144–5148, 2011.

[32] Kekeli Ekoue-Kovi and Christian Wolf. One-pot oxidative esterification and amidation of aldehydes.Chemistry - A European Journal, Vol. 14, No. 21, pp. 6302–6315, 2008.

[33] Yanyan Diao, Ruiyi Yan, Suojiang Zhang, Pu Yang, Zengxi Li, Lei Wang, and Haifeng Dong. Effects of Pb and Mg doping in Al2O3-supported Pd catalyst on direct oxidative esterification of aldehydes with alcohols to esters. Journal of Molecular Catalysis A: Chemical, Vol. 303, No. 1-2, pp. 35–42,2009.

[34] Setsuo Yamamatsu, Tatsuo Yamaguchi, Koshiro Yokota, Osamu Nagano, Masazumi Chono, and Atsushi Aoshima. Development of Catalyst Technology for Producing Methyl Methacrylate (MMA) by Direct Methyl Esterification. Catalysis Surveys from Asia, Vol. 14, No. 3, pp. 124–131, 2010.

[35] A. Visikovskiy, K. Mitsuhara, M. Hazama, M. Kohyama, and Y. Kido. The atomic and electronic structures of NiO(001)/Au(001) interfaces. Journal of Chemical Physics, Vol. 139, No. 14, 2013.

[36] Hiroaki Koga, Kohei Tada, and Mitsutaka Okumura. Density Functional Theory Study of Active Oxygen at the Perimeter of Au/TiO2 Catalysts. Journal of Physical Chemistry C, Vol. 119, No. 46,pp. 25907–25916, 2015.

[37] Kohei Tada, Hiroaki Koga, Akihide Hayashi, Yudai Kondo, Takashi Kawakami, Shusuke Yamanaka,and Mitsutaka Okumura. Theoretical clarification of the coexistence of cl effects on Au/TiO2: The interaction between au clusters and the TiO2surface, and the aggregation of au clusters on the TiO2surface. Bulletin of the Chemical Society of Japan, Vol. 90, No. 5, pp. 506–519, 2017.

[38] Y. N. Sun, Z. H. Qin, M. Lewandowski, E. Carrasco, M. Sterrer, S. Shaikhutdinov, and H. J.Freund. Monolayer iron oxide film on platinum promotes low temperature CO oxidation. Journal of Catalysis, Vol. 266, No. 2, pp. 359–368, 2009.

[39] Yu Lei, Mikolaj Lewandowski, Ying Na Sun, Yuichi Fujimori, Yulija Martynova, Irene M.N. Groot,Randall J. Meyer, Livia Giordano, Gianfranco Pacchioni, Jacek Goniakowski, Claudine Noguera,Shamil Shaikhutdinov, and Hans Joachim Freund. CO+NO versus CO+O2Reaction on Monolayer FeO(111) Films on Pt(111). ChemCatChem, Vol. 3, No. 4, pp. 671–674, 2011.

[40] Hiroaki Koga, Kohei Tada, Akihide Hayashi, Yoshinori Ato, and Mitsutaka Okumura. High NOxReduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study. Catalysis Letters, Vol. 147, No. 7, pp. 1827–1833, 2017.

[41] Anders Hellman, Simon Klacar, and Henrik Gr¨onbeck. Low temperature CO oxidation over supported ultrathin MgO films. Journal of the American Chemical Society, Vol. 131, No. 46, pp.16636–16637, 2009.

[42] Hyung Joon Shin, Jaehoon Jung, Kenta Motobayashi, Susumu Yanagisawa, Yoshitada Morikawa,Yousoo Kim, and Maki Kawai. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials, Vol. 9, No. 5, pp. 442–447, 2010.

[43] Anastasia Gonchar, Thomas Risse, Hans Joachim Freund, Livia Giordano, Cristiana Di Valentin,and Gianfranco Pacchioni. Activation of oxygen on MgO: O2.-radical ion formation on thin, metalsupported MgO(001) films. Angewandte Chemie - International Edition, Vol. 50, No. 11, pp. 2635–2638, 2011.

[44] Dongbin Shin, S. Sinthika, Min Choi, Ranjit Thapa, and Noejung Park. Ab initio study of thin oxidemetal overlayers as an inverse catalytic system for dioxygen reduction and enhanced CO tolerance.ACS Catalysis, Vol. 4, No. 11, pp. 4074–4080, 2014.

[45] Akihide Hayashi, Yoshinori Ato, Kohei Tada, Hiroaki Koga, Takashi Kawakami, Shusuke Yamanaka,and Mitsutaka Okumura. Theoretical Investigation of the Heterojunction Effect on the Catalytic Activity and Selectivity of an Au@NiO Core-Shell Catalyst in Aerobic Oxidation. Journal of Physical Chemistry C, Vol. 124, No. 31, pp. 17039–17047, 2020.

[46] Technische Universitat Wien and Wiedner Hauptstrage. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Physical Review B, Vol. 49,No. 20, pp. 14251–14269, 1994.

[47] G. Kresse and J. Hafner. Ab initio molecular dynamcis for liquid metals. Physical Review B, Vol. 47,No. 1, p. 558, 1993.

[48] G Kresse and J. Furthm¨uller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, Vol. 6, No. 1, pp. 15–50,7 1996.

[49] G Kresse and J Furthmu. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Vol. 54, No. 16, p. 54, 1996.

[50] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energyloss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B,Vol. 57, No. 3, pp. 1505–1509, 1 1998.

[51] John Rumble. CRC HANDBOOK of CHEMISTRY and PHYSICS. CRC Press, Boca Raton, FL,99th edition, 2018.

[52] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, Vol. 24, No. 111, pp. 647–647, 1970.

[53] Jorge Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation, Vol. 35, No. 151, p. 773, 7 1980.

[54] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, p. 409, 1952.

[55] Erik Bitzek, Pekka Koskinen, Franz G¨ahler, Michael Moseler, and Peter Gumbsch. Structural relaxation made simple. Physical Review Letters, Vol. 97, No. 17, pp. 1–4, 2006.

[56] Bruce J Berne, Giovanni Ciccotti, and David F Coker. Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore, 1997.

[57] Daniel Sheppard, Penghao Xiao, William Chemelewski, Duane D. Johnson, and Graeme Henkelman.A generalized solid-state nudged elastic band method. Journal of Chemical Physics, Vol. 136, No. 7,2012.

[58] Graeme Henkelman, Blas P Uberuaga, Hannes J´onsson, and Graeme Henkelman. A climbing image nudged elastic band method for finding saddle points and minimum energy paths A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, Vol. 9901, No. 2000, pp. 1–5, 2011.

[59] Graeme Henkelman and Hannes J´onsson. A dimer method for finding saddle points on high dimen116 sional potential surfaces using only first derivatives. Journal of Chemical Physics, Vol. 111, No. 15, pp. 7010–7022, 1999.

[60] Andreas Heyden, Alexis T. Bell, and Frerich J. Keil. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. Journal of Chemical Physics, Vol. 123, No. 22, 2005.

[61] Johannes K¨astner and Paul Sherwood. Superlinearly converging dimer method for transition state search. Journal of Chemical Physics, Vol. 128, No. 1, 2008.

[62] Penghao Xiao, Daniel Sheppard, Jutta Rogal, and Graeme Henkelman. Solid-state dimer method for calculating solid-solid phase transitions. Journal of Chemical Physics, Vol. 140, No. 17, 2014.

[63] Ask Hjorth Larsen, Jens JØrgen Mortensen, Jakob Blomqvist, Ivano E. Castelli, Rune Christensen,Marcin Du lak, Jesper Friis, Michael N. Groves, BjØrk Hammer, Cory Hargus, Eric D. Hermes,Paul C. Jennings, Peter Bjerre Jensen, James Kermode, John R. Kitchin, Esben Leonhard Kolsbjerg,Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, J´on Bergmann Maronsson, Tristan Maxson,Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob SchiØtz, Ole Sch¨utt,Mikkel Strange, Kristian S. Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng,and Karsten W. Jacobsen. The atomic simulation environment - A Python library for working with atoms. Journal of Physics Condensed Matter, Vol. 29, No. 27, 2017.

[64] Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, Vol. 44, No. 6, pp. 1272–1276, 2011.

[65] Akihide Hayashi, Yoshinori Ato, Kohei Tada, Hiroaki Koga, Takashi Kawakami, Shusuke Yamanaka,and Mitsutaka Okumura. Theoretical Investigation of Surface Oxidation of NiO/Au Core-Shell Catalyst. e-Journal of Surface Science and Nanotechnology, Vol. 16, No. 0, pp. 242–246, 2018.

[66] David Michael P. Mingos, Peter Day, and Jens Peder Dahl. Molecular Electronic Structures of Transition Metal Complexes I. Springer-Verlag Berlin Heidelberg, Heidelberg, 1 edition, 2012.

[67] K. Christmann, G. Ertl, and T. Pignet. Adsorption of hydrogen on a Pt(111) surface. Surface Science, Vol. 54, No. 2, pp. 365–392, 1976.

[68] Joanne Fearon and Graeme W. Watson. Hydrogen adsorption and diffusion on Pt {111} and PtSn {111}. Journal of Materials Chemistry, Vol. 16, No. 20, pp. 1989–1996, 2006.

[69] Tran Thi Thu Hanh, Yoshinari Takimoto, and Osamu Sugino. First-principles thermodynamic description of hydrogen electroadsorption on the Pt(111) surface. Surface Science, Vol. 625, pp.104–111, 2014.

[70] Sarah Gautier and Philippe Sautet. Coadsorption of Butadiene and Hydrogen on the (111) Surfaces of Pt and Pt2Sn Surface Alloy: Understanding the Cohabitation from First-Principles Calculations.Journal of Physical Chemistry C, Vol. 121, No. 45, pp. 25152–25163, 2017.

[71] Aiqm. aiqm/torchani. https://github.com/aiqm/torchani, 4 2018.

[72] John E. Herr, Kun Yao, Ryker McIntyre, David W. Toth, and John Parkhill. Metadynamics for training neural network model chemistries: A competitive assessment. Journal of Chemical Physics,Vol. 148, No. 24, 2018.

[73] Sarah Gautier, Stephan N. Steinmann, Carine Michel, Paul Fleurat-Lessard, and Philippe Sautet.Molecular adsorption at Pt(111). How accurate are DFT functionals? Physical Chemistry Chemical 117 Physics, Vol. 17, No. 43, pp. 28921–28930, 2015.

[74] Akihide Hayashi, Yoshinori Ato, Akira Yamamoto, Hisao Yoshida, Shusuke Yamanaka, Takashi Kawakami, and Mitsutaka Okumura. Gibbs energy of hydrogen adsorption on pt surface by machine learning potential and metadynamics. Chemistry Letters, April 2021.

[75] Richard P. Feynman and Albert R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill,1965.

[76] Michele Ceriotti, Michele Parrinello, Thomas E. Markland, and David E. Manolopoulos. Efficient stochastic thermostatting of path integral molecular dynamics. Journal of Chemical Physics, Vol.133, No. 12, 2010.

[77] Seogjoo Jang and Gregory A. Voth. Path integral centroid variables and the formulation of their exact real time dynamics. Journal of Chemical Physics, Vol. 111, No. 6, pp. 2357–2370, 1999.

[78] Daniel A. Col´on-Ramos, Patrick La Riviere, Hari Shroff, and Rudolf Oldenbourg. Transforming the development and dissemination of cutting-edge microscopy and computation. Nature Methods,Vol. 16, No. 8, pp. 667–669, 2019.

[79] Gareth A. Tribello, Massimiliano Bonomi, Davide Branduardi, Carlo Camilloni, and Giovanni Bussi.PLUMED 2: New feathers for an old bird. Computer Physics Communications, Vol. 185, No. 2, pp.604–613, 2014.

[80] Massimiliano Bonomi, Davide Branduardi, Giovanni Bussi, Carlo Camilloni, Davide Provasi, Paolo Raiteri, Davide Donadio, Fabrizio Marinelli, Fabio Pietrucci, Ricardo A. Broglia, and Michele Parrinello. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, Vol. 180, No. 10, pp. 1961–1972, 2009.

[81] Iuro Horiuti and M. Polanyi. Exchange reactions of hydrogen on metallic catalysts. Transactions of the Faraday Society, Vol. 30, p. 1164, 1934.

[82] Randy D. Cortright, Scott A. Goddard, James E. Rekoske, and J. A. Dumesic. Kinetic study of ethylene hydrogenation. Journal of Catalysis, Vol. 127, No. 1, pp. 342–353, 1991.

[83] Thomas P. Beebe and John T. Yates. An in Situ Infrared Spectroscopic Investigation of the Role of Ethylidyne in the Ethylene Hydrogenation Reaction on Pd/Al2O3. Journal of the American Chemical Society, Vol. 108, No. 4, pp. 663–671, 1986.

[84] Christopher J. Heard, Samira Siahrostami, and Henrik Gr¨onbeck. Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces. Journal of Physical Chemistry C, Vol.120, No. 2, pp. 995–1003, 2016.

[85] James E. Rekoske, Randy D. Cortright, Scott A. Goddard, Sanjay B. Sharma, and J. A. Dumesic.Microkinetic analysis of diverse experimental data for ethylene hydrogenation on platinum. Journal of Physical Chemistry, Vol. 96, No. 4, pp. 1880–1888, 1992.

[86] 山本旭, 渡辺太樹, 土屋直樹, 林亮秀, 奥村光隆, 吉田寿雄. Xafs を用いたプロピレン水素化反応中の白金触媒上の吸着水素種分析. 第 123 回触媒討論会, 3 2019.

[87] Jiiˇr´ı Klimeˇs, David R. Bowler, and Angelos Michaelides. Chemical accuracy for the van der Waals density functional. Journal of Physics Condensed Matter, Vol. 22, No. 2, 2010.

[88] Jiˇr´ı Klime, David R. Bowler, and Angelos Michaelides. Van der Waals density functionals applied to solids. Physical Review B - Condensed Matter and Materials Physics, Vol. 83, No. 19, pp. 1–13,2011.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る