リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Histological study on regional specificity of the mucosal nerve network in the rat large intestine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Histological study on regional specificity of the mucosal nerve network in the rat large intestine

Nakanishi, Satoki Mantani, Youhei Ohno, Nobuhiko Morishita, Rinako Yokoyama, Toshifumi Hoshi, Nobuhiko 神戸大学

2023.02

概要

Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP⁺ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.

この論文で使われている画像

参考文献

1. Arai M, Mantani Y, Nakanishi S, Haruta T, Nishida M, Yuasa H, Yokoyama T, Hoshi N, Kitagawa H. 2020. Morphological and phenotypical diversity

of eosinophils in the rat ileum. Cell Tissue Res 381: 439–450. [Medline] [CrossRef]

2. Balemba OB, Grøndahl ML, Mbassa GK, Semuguruka WD, Hay-Smith A, Skadhauge E, Dantzer V. 1998. The organisation of the enteric nervous

system in the submucous and mucous layers of the small intestine of the pig studied by VIP and neurofilament protein immunohistochemistry. J Anat

192: 257–267. [Medline] [CrossRef]

3. Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. 2016. Microscopy Image Browser: a platform for segmentation and analysis of multidimensional

datasets. PLoS Biol 14: e1002340. [Medline] [CrossRef]

4. Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. 1995. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in

vivo DiI-tracing. Anat Embryol (Berl) 191: 203–212. [Medline] [CrossRef]

5. Berthoud HR, Patterson LM. 1996. Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat

small intestinal mucosa. Acta Anat (Basel) 156: 123–131. [Medline] [CrossRef]

J. Vet. Med. Sci. 85(2): 123–134, 2023

132

REGIONAL SPECIFITY OF ENTERIC NERVE

6. Bjerknes M, Cheng H. 2001. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc Natl Acad Sci USA 98: 12497–12502.

[Medline] [CrossRef]

7. Bornstein JC, Furness JB, Costa M. 1989. An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the

guinea-pig submucous plexus. J Auton Nerv Syst 26: 113–120. [Medline] [CrossRef]

8. Buckinx R, Alpaerts K, Pintelon I, Cools N, Van Nassauw L, Adriaensen D, Timmermans JP. 2017. In situ proximity of CX3CR1-positive mononuclear

phagocytes and VIP-ergic nerve fibers suggests VIP-ergic immunomodulation in the mouse ileum. Cell Tissue Res 368: 459–467. [Medline] [CrossRef]

9. Cooke HJ, Sidhu M, Wang YZ. 1997. Activation of 5-HT1P receptors on submucosal afferents subsequently triggers VIP neurons and chloride

secretion in the guinea-pig colon. J Auton Nerv Syst 66: 105–110. [Medline] [CrossRef]

10. Costa M, Furness JB. 1984. Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience 13:

911–919. [Medline] [CrossRef]

11. Desaki J, Fujiwara T, Komuro T. 1984. A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy.

Arch Histol Jpn 47: 179–186. [Medline] [CrossRef]

12. Farin HF, Van Es JH, Clevers H. 2012. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology

143: 1518–1529.e7. [Medline] [CrossRef]

13. Field M. 2003. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111: 931–943. [Medline] [CrossRef]

14. Furness JB. 1970. The origin and distribution of adrenergic nerve fibres in the guinea-pig colon. Histochemie 21: 295–306. [Medline] [CrossRef]

15. Furness JB. 2000. Types of neurons in the enteric nervous system. J Auton Nerv Syst 81: 87–96. [Medline] [CrossRef]

16. Furness JB. 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9: 286–294. [Medline] [CrossRef]

17. Furness JB, Costa M, Emson PC, Håkanson R, Moghimzadeh E, Sundler F, Taylor IL, Chance RE. 1983. Distribution, pathways and reactions to drug

treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res 234:

71–92. [Medline] [CrossRef]

18. Furness JB, Costa M, Gibbins IL, Llewellyn-Smith IJ, Oliver JR. 1985. Neurochemically similar myenteric and submucous neurons directly traced to

the mucosa of the small intestine. Cell Tissue Res 241: 155–163. [Medline] [CrossRef]

19. Furness JB, Costa M, Keast JR. 1984. Choline acetyltransferase- and peptide immunoreactivity of submucous neurons in the small intestine of the

guinea-pig. Cell Tissue Res 237: 329–336. [Medline] [CrossRef]

20. Furness JB, Jones C, Nurgali K, Clerc N. 2004. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72: 143–164.

[Medline] [CrossRef]

21. Furness JB, Trussell DC, Pompolo S, Bornstein JC, Smith TK. 1990. Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their

numbers and projections. Cell Tissue Res 260: 261–272. [Medline] [CrossRef]

22. Furuya K, Sokabe M, Furuya S. 2005. Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-shape-dependent ATP

release and P2Y1 signaling. J Cell Sci 118: 3289–3304. [Medline] [CrossRef]

23. Furuya S, Furuya K. 2013. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. Int Rev Cell Mol Biol 304: 133–189.

[Medline] [CrossRef]

24. Güldner FH, Wolff JR, Keyserlingk DG. 1972. Fibroblasts as a part of the contractile system in duodenal villi of rat. Z Zellforsch Mikrosk Anat 135:

349–360. [Medline] [CrossRef]

25. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse

retina. Nature 500: 168–174. [Medline] [CrossRef]

26. Hens J, Schrödl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans JP. 2000. Mucosal projections of enteric

neurons in the porcine small intestine. J Comp Neurol 421: 429–436. [Medline] [CrossRef]

27. Hoffmann P, Mazurkiewicz J, Holtmann G, Gerken G, Eysselein VE, Goebell H. 2002. Capsaicin-sensitive nerve fibres induce epithelial cell

proliferation, inflammatory cell immigration and transforming growth factor-alpha expression in the rat colonic mucosa in vivo. Scand J Gastroenterol

37: 414–422. [Medline] [CrossRef]

28. Kandel ER, Schwartz JH, Jessel TM. 2000. Principles of Neural Science, 4th ed., McGraw-Hill, New York.

29. Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M,

Morgan JL, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW. 2015. Saturated reconstruction

of a volume of neocortex resource saturated reconstruction of a volume of neocortex. Cell 162: 648–661. [Medline] [CrossRef]

30. Keast JR, Furness JB, Costa M. 1984. Origins of peptide and norepinephrine nerves in the mucosa of the guinea pig small intestine. Gastroenterology

86: 637–644. [Medline] [CrossRef]

31. Keast JR, Furness JB, Costa M. 1985. Investigations of nerve populations influencing ion transport that can be stimulated electrically, by serotonin

and by a nicotinic agonist. Naunyn Schmiedebergs Arch Pharmacol 331: 260–266. [Medline] [CrossRef]

32. Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X. 2007. Gene expression patterns

of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104: 15418–15423. [Medline]

[CrossRef]

33. Krammer HJ, Kühnel W. 1993. Topography of the enteric nervous system in Peyer’s patches of the porcine small intestine. Cell Tissue Res 272:

267–272. [Medline] [CrossRef]

34. Kulkarni-Narla A, Beitz AJ, Brown DR. 1999. Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in

porcine jejunum and ileum. Cell Tissue Res 298: 275–286. [Medline] [CrossRef]

35. Lee WC, Bonin V, Reed M, Graham BJ, Hood G, Glattfelder K, Reid RC. 2016. Anatomy and function of an excitatory network in the visual cortex.

Nature 532: 370–374. [Medline] [CrossRef]

36. Li ZS, Furness JB. 1998. Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig

small intestine. Cell Tissue Res 294: 35–43. [Medline] [CrossRef]

37. Mantani Y, Haruta T, Nakanishi S, Sakata N, Yuasa H, Yokoyama T, Hoshi N. 2021. Ultrastructural and phenotypical diversity of macrophages in the

rat ileal mucosa. Cell Tissue Res 385: 697–711. [Medline] [CrossRef]

38. Mantani Y, Haruta T, Nishida M, Yokoyama T, Hoshi N, Kitagawa H. 2019. Three-dimensional analysis of fibroblast-like cells in the lamina propria

of the rat ileum using serial block-face scanning electron microscopy. J Vet Med Sci 81: 454–465. [Medline] [CrossRef]

39. Mantani Y, Yuasa H, Nishida M, Takahara E, Omotehara T, Udayanga KG, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. 2014. Peculiar composition

of epithelial cells in follicle-associated intestinal crypts of Peyer’s patches in the rat small intestine. J Vet Med Sci 76: 833–838. [Medline] [CrossRef]

40. Macrae IM, Furness JB, Costa M. 1986. Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res

244: 173–180. [Medline] [CrossRef]

41. Matthews MR, Cuello AC. 1982. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons.

J. Vet. Med. Sci. 85(2): 123–134, 2023

133

S NAKANISHI ET AL.

Proc Natl Acad Sci USA 79: 1668–1672. [Medline] [CrossRef]

42. Mongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB. 2009. Identification of neuron types in the submucosal ganglia of the mouse ileum.

Cell Tissue Res 336: 179–189. [Medline] [CrossRef]

43. Morgan JL, Berger DR, Wetzel AW, Lichtman JW. 2016. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165: 192–206.

[Medline] [CrossRef]

44. Nagahama M, Semba R, Tsuzuki M, Ozaki T. 2001. Distribution of peripheral nerve terminals in the small and large intestine of congenital

aganglionosis rats (Hirschsprung’s disease rats). Pathol Int 51: 145–157. [Medline] [CrossRef]

45. Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N. 2020. Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by

serial block-face scanning electron microscopy. J Vet Med Sci 82: 990–999. [Medline] [CrossRef]

46. Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S. 2015. Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy

(Oxf) 64: 17–26. [Medline] [CrossRef]

47. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ. 2009. Sustained in vitro

intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15: 701–706. [Medline] [CrossRef]

48. Qu ZD, Thacker M, Castelucci P, Bagyánszki M, Epstein ML, Furness JB. 2008. Immunohistochemical analysis of neuron types in the mouse small

intestine. Cell Tissue Res 334: 147–161. [Medline] [CrossRef]

49. Sang Q, Young HM. 1998. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec 251:

185–199. [Medline] [CrossRef]

50. Sarna SK. 2008. Are interstitial cells of Cajal plurifunction cells in the gut? Am J Physiol Gastrointest Liver Physiol 294: G372–G390. [Medline]

[CrossRef]

51. Satoh Y. 1988. Atropine inhibits the degranulation of Paneth cells in ex-germ-free mice. Cell Tissue Res 253: 397–402. [Medline] [CrossRef]

52. Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J. 1987. Intestinal mucosal mast cells in normal and nematode-infected rat

intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci USA 84: 2975–2979. [Medline] [CrossRef]

53. Straub RH, Wiest R, Strauch UG, Härle P, Schölmerich J. 2006. The role of the sympathetic nervous system in intestinal inflammation. Gut 55:

1640–1649. [Medline] [CrossRef]

54. Stzepourginski I, Nigro G, Jacob JM, Dulauroy S, Sansonetti PJ, Eberl G, Peduto L. 2017. CD34+ mesenchymal cells are a major component of the

intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci USA 114: E506–E513. [Medline] [CrossRef]

55. Tamura S, Mantani Y, Nakanishi S, Ohno N, Yokoyama T, Hoshi N. 2022. Region specificity of fibroblast-like cells in the mucosa of the rat large

intestine. Cell Tissue Res 389: 427–441. [Medline] [CrossRef]

56. Timmermans JP, Hens J, Adriaensen D. 2001. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes

in the intestine of large mammals and humans. Anat Rec 262: 71–78. [Medline] [CrossRef]

57. Wang FB, Powley TL. 2000. Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421: 302–324. [Medline] [CrossRef]

58. Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE. 1996. Visualization of the vesicular acetylcholine transporter in cholinergic nerve

terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93: 3547–3552. [Medline] [CrossRef]

J. Vet. Med. Sci. 85(2): 123–134, 2023

134

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る