リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The osteogenic potential of Phosphorylated-Pullulan/β-TCP composite scaffolds and low doses of Bone Morphogenetic Protein-2 (BMP-2) in subcutaneous tissues」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The osteogenic potential of Phosphorylated-Pullulan/β-TCP composite scaffolds and low doses of Bone Morphogenetic Protein-2 (BMP-2) in subcutaneous tissues

Alruwaili, Mohammed Katib R 北海道大学

2023.03.23

概要

1.1 Background
Regenerative therapy has offered a viable and safer alternative to conventional autograft
for the treatment of bone defects, eliminating donor site morbidity [1,2]. Ideal
requirement of bone graft includes high biocompatibility, adequate mechanical support,
ostoinductive, osteoconductive and easy in handling. It should also be sterilizable and
biodegradable. [3,4].
Bone substitutes can be classified into three main categories: bone grafts (autograft,
allograft, xenograft), ceramics (hydroxyapatite, tricalcium phosphate, calcium sulfate)
and growth factors (bone morphogenic protein, demineralized bone matrix, plateletderived growth factor) [5]. ...

この論文で使われている画像

参考文献

1.

McKay, W.F.; Peckham, S.M.; Badura, J.M. A comprehensive clinical review of

recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft).

International orthopaedics 2007, 31, 729-734, doi:10.1007/s00264-007-0418-6.

2.

Takahata, T.; Okihara, T.; Yoshida, Y.; Yoshihara, K.; Shiozaki, Y.; Yoshida, A.;

Yamane, K.; Watanabe, N.; Yoshimura, M.; Nakamura, M.; et al. Bone

engineering by phosphorylated-pullulan and <i>β</i> -TCP composite.

Biomedical Materials 2015, 10, 065009, doi:10.1088/1748-6041/10/6/065009.

3.

Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.;

Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: a review of their

characteristics, clinical use, and perspectives for large bone defects management.

Journal

of

tissue

engineering

2018,

9,

2041731418776819,

doi:10.1177/2041731418776819.

51

4.

Bohner, M.; Baroud, G.; Bernstein, A.; Döbelin, N.; Galea, L.; Hesse, B.;

Heuberger, R.; Meille, S.; Michel, P.; von Rechenberg, B.; et al. Characterization

and distribution of mechanically competent mineralized tissue in micropores of

β-tricalcium phosphate bone substitutes. Materials Today 2017, 20, 106-115,

doi:https://doi.org/10.1016/j.mattod.2017.02.002.

5.

Liu, Y.K.; Lu, Q.Z.; Pei, R.; Ji, H.J.; Zhou, G.S.; Zhao, X.L.; Tang, R.K.; Zhang,

M. The effect of extracellular calcium and inorganic phosphate on the growth and

osteogenic differentiation of mesenchymal stem cells in vitro: implication for

bone tissue engineering. Biomedical materials (Bristol, England) 2009, 4, 025004,

doi:10.1088/1748-6041/4/2/025004.

6.

Tebyanian, H.; Norahan, M.H.; Eyni, H.; Movahedin, M.; Mortazavi, S.J.; Karami,

A.; Nourani, M.R.; Baheiraei, N. Effects of collagen/β-tricalcium phosphate bone

graft to regenerate bone in critically sized rabbit calvarial defects. Journal of

applied biomaterials & functional materials 2019, 17, 2280800018820490,

doi:10.1177/2280800018820490.

7.

Baheiraei, N.; Nourani, M.R.; Mortazavi, S.M.J.; Movahedin, M.; Eyni, H.;

Bagheri, F.; Norahan, M.H. Development of a bioactive porous collagen/βtricalcium phosphate bone graft assisting rapid vascularization for bone tissue

engineering applications. Journal of biomedical materials research. Part A 2018,

106, 73-85, doi:10.1002/jbm.a.36207.

8.

Geiger, M.; Li, R.H.; Friess, W. Collagen sponges for bone regeneration with

rhBMP-2. Advanced drug delivery reviews 2003, 55, 1613-1629,

doi:10.1016/j.addr.2003.08.010.

9.

Bouyer, M.; Guillot, R.; Lavaud, J.; Plettinx, C.; Olivier, C.; Curry, V.; Boutonnat,

J.; Coll, J.L.; Peyrin, F.; Josserand, V.; et al. Surface delivery of tunable doses of

BMP-2 from an adaptable polymeric scaffold induces volumetric bone

regeneration.

Biomaterials

2016,

104,

168-181,

doi:10.1016/j.biomaterials.2016.06.001.

10.

Li, R.H.; Wozney, J.M. Delivering on the promise of bone morphogenetic

proteins. Trends in biotechnology 2001, 19, 255-265, doi:10.1016/s01677799(01)01665-1.

11.

Ruan, S.; Deng, J.; Yan, L.; Huang, W. Evaluation of the effects of the

combination of BMP-2-modified BMSCs and PRP on cartilage defects.

Experimental

and

therapeutic

medicine

2018,

16,

4569-4577,

doi:10.3892/etm.2018.6776.

12.

Samee, M.; Kasugai, S.; Kondo, H.; Ohya, K.; Shimokawa, H.; Kuroda, S. Bone

morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor

52

(VEGF) transfection to human periosteal cells enhances osteoblast differentiation

and bone formation. Journal of pharmacological sciences 2008, 108, 18-31,

doi:10.1254/jphs.08036fp.

13.

Masuda, T.; Otsu, K.; Kumakami-Sakano, M.; Fujiwara, N.; Ema, M.; Hitomi, J.;

Sugiyama, Y.; Harada, H. Combined administration of BMP-2 and HGF facilitate

bone regeneration through angiogenic mechanisms. Journal of Hard Tissue

Biology 2015, 24, 7-16.

14.

Reyes, R.; Rodríguez, J.A.; Orbe, J.; Arnau, M.R.; Évora, C.; Delgado, A.

Combined sustained release of BMP2 and MMP10 accelerates bone formation

and mineralization of calvaria critical size defect in mice. Drug delivery 2018, 25,

750-756, doi:10.1080/10717544.2018.1446473.

15.

Kim, H.J.; Kang, S.W.; Lim, H.C.; Han, S.B.; Lee, J.S.; Prasad, L.; Kim, Y.J.;

Kim, B.S.; Park, J.H. The role of transforming growth factor-beta and bone

morphogenetic protein with fibrin glue in healing of bone-tendon junction injury.

Connective tissue research 2007, 48, 309-315, doi:10.1080/03008200701692610.

16.

Jung, R.E.; Weber, F.E.; Thoma, D.S.; Ehrbar, M.; Cochran, D.L.; Hämmerle,

C.H. Bone morphogenetic protein-2 enhances bone formation when delivered by

a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clinical oral

implants research 2008, 19, 188-195, doi:10.1111/j.1600-0501.2007.01431.x.

17.

Haidar, Z.S.; Hamdy, R.C.; Tabrizian, M. Delivery of recombinant bone

morphogenetic proteins for bone regeneration and repair. Part B: Delivery

systems for BMPs in orthopaedic and craniofacial tissue engineering.

Biotechnology letters 2009, 31, 1825-1835, doi:10.1007/s10529-009-0100-8.

18.

Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone

defect repair: A review. Bioactive materials 2017, 2, 224-247,

doi:10.1016/j.bioactmat.2017.05.007.

19.

Canullo, L.; Tronchi, M.; Kawakami, S.; Iida, T.; Signorini, L.; Mordini, L.

Horizontal Bone Augmentation in the Anterior Esthetic Area of the Maxilla Using

a Flap Design Adapted from Mucogingival Surgery in Association with PLA

Membrane and β-TCP. The International journal of periodontics & restorative

dentistry 2019, 39, 195-201, doi:10.11607/prd.3894.

20.

Amrita; Arora, A.; Sharma, P.; Katti, D.S. Pullulan-based composite scaffolds for

bone tissue engineering: Improved osteoconductivity by pore wall mineralization.

Carbohydrate polymers 2015, 123, 180-189, doi:10.1016/j.carbpol.2015.01.038.

53

21.

Cardoso, M.V.; Chaudhari, A.; Yoshida, Y.; Van Meerbeek, B.; Naert, I.; Duyck,

J. Bone tissue response to implant surfaces functionalized with phosphatecontaining polymers. 2014, 25, 91-100, doi:https://doi.org/10.1111/clr.12053.

22.

Schlaubitz, S.; Derkaoui, S.M.; Marosa, L.; Miraux, S.; Renard, M.; Catros, S.;

Le Visage, C.; Letourneur, D.; Amédée, J.; Fricain, J.C. Pullulan/dextran/nHA

macroporous composite beads for bone repair in a femoral condyle defect in rats.

PloS one 2014, 9, e110251, doi:10.1371/journal.pone.0110251.

54

CHAPTER 5: GENERAL CONCLUSION

Study 1:

The present study demonstrated that 1.167 and 0.117 mg/ml of rhBMP-2 with ACS as

the carrier induced ectopic bone formation in 4 weeks. The in vivo findings, on the other

hand, confirmed the ability of ACS to retain rhBMP-2, support the newly formed bone,

and show a good biodegradation rate. However, bone formation was not observed with

0.039 mg/ml of rhBMP-2. Moreover, rhBMP-2 was found to be osteogenic even at onetenth of recommended concentration, indicating the potential for clinical use at lower

concentrations. Future research might focus on the development of release control

delivery vehicles. Combining rhBMP-2 with various bone grafting materials improves

mechanical strength and osteogenic potential while using lower rhBMP-2 concentrations.

Study 2:

This study represents a further development in the method used for Study 1. This

demonstrated the same concentration of rhBMP-2 used in Study 1(1.167 mg/ml), which

combined with phosphorylated pullulan and β-tricalcium phosphate. These composite

scaffolds were implanted in the ectopic sites of rat model with 2 weeks of observation.

We found that the mixture of 20101B (PPL1) (600,000 MW of PPL) and 20101D (PPL2)

(combined 600,000 MW and 1,000,000 MW of PPL) with a ratio of 1-5 is the optimum

molecular weight of PPL, which can induce greater bone formation as well as a higher

biological degradability of PPL. We concluded that this composite can be considered a

potentially promising material in the field of bone regeneration. In the future experiment,

the optimum doses of BMP-2 and the optimum amount of β-tricalcium that induce greater

bone formation with no side effects might be determined.

Study 3:

This study also reflects an advancement in the approach utilized in Study 1 and 2, in

which four different rhBMP-2 doses combined with phosphorylated pullulan and βtricalcium phosphate. However, we synthesized BMP/PPL/β-TCP composite scaffolds of

low BMP-2 doses to find a composite of higher osteogenic properties with lower BMP-2

55

dose. Our conclusion is that BPT2 scaffolds induced greater bone formation than BC1

implant material with only one-tenth of recommended doses. These newly developed

scaffolds can be regarded as a very promising material in bone regeneration. Further

studies are required to examine the adhesive behavior of this recently developed

composite scaffold.

Acknowledgments

The completion of this work would not have been possible without the god all mighty

support and guidance. I would like to express my sincere gratitude to my Ph.D. thesis

advisor Prof. Tsutomu SUGAYA for his continuous support and guidance in my Ph.D.

study, research, and clinical training for his patience, motivation, enthusiasm, and

knowledge. A debt of gratitude is also owed to Prof. Norio Amitsuka, Prof.Yasuhiro

Yoshida, and Dr. Kumiko Yoshihara for helping us in materials and technical works.

I wish to extend my sincere appreciation to Dr. Yasuhiro Morimoto and Dr. Hirofumi

MIYAJI and all the members of the department for their assistance and support.

My gratitude extends to the Embassy of Saudi Arabia - Cultural Office in Tokyo and Jouf

University for sponsoring my education and training, as well as for their endless support

over the last four years. Finally, I thank my parents, my wife, and my whole family

members, for their patience, guidance, and support during my Ph.D. journey.

56

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る