リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Low-Intensity Pulsed Ultrasound Promotes Osteogenic Differentiation of Reamer-Irrigator-Aspirator Graft-Derived Cells in Vitro」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Low-Intensity Pulsed Ultrasound Promotes Osteogenic Differentiation of Reamer-Irrigator-Aspirator Graft-Derived Cells in Vitro

Sawauchi, Kenichi Fukui, Tomoaki Oe, Keisuke Kumabe, Yohei Oda, Takahiro Yoshikawa, Ryo Takase, Kyohei Matsushita, Takehiko Matsumoto, Tomoyuki Hayashi, Shinya Kuroda, Ryosuke Niikura, Takahiro 神戸大学

2022.02

概要

Recently, reamer–irrigator–aspirator (RIA) systems have been increasingly used to harvest autologous bone grafts. RIA graft materials contain bone marrow, which provides a viable source to derive large numbers of mesenchymal stem cells. Low-intensity pulsed ultrasound (LIPUS) significantly accelerates the differentiation of stem cells derived from bone marrow. This in vitro study investigated the effect of LIPUS on the osteogenic activity and differentiation of RIA graft-derived cells. A small amount of RIA graft was obtained from seven patients. After the cells derived from RIA grafts were cultured, they were divided into two groups: the LIPUS and control groups. LIPUS was applied once daily for 20 min (1.5 MHz, pulse duration: 200 µs, pulse repetition rate: 1 kHz, spatial average-temporal average intensity: 30 mW/cm2). Alkaline phosphatase activity (113.4% and 130.1% on days 7 and 14), expression of osteoblast-related genes (ALP, Runx2) and mineralization (135.2% on day 21) of the RIA graft-derived cells were significantly higher in the LIPUS group than in the control group. However, LIPUS did not affect the cell proliferation of RIA graft-derived cells. This study indicates that LIPUS may enhance the healing of non-union and critical bone defects treated by autologous bone grafting using the RIA system.

この論文で使われている画像

参考文献

264

Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat

265

femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res

266

2001;16:671-80.

267

Belthur MV, Conway JD, Jindal G, Ranade A, Herzenberg JE. Bone graft harvest using a new

268

intramedullary system. Clin Orthop Relat Res 2008;466:2973-2980.

269

Busse JW, Bhandari M, Kulkarni AV, Tunks Eldon. The effect of low-intensity pulsed ultrasound therapy

270

on time to fracture healing: a meta-analysis. CMAJ 2002;166:437-441.

271

Cox G, Jones E, McGonagle D, Giannoudis PV. Reamer–irrigator–aspirator indications and clinical results:

272

a systematic review. Int Orthop 2011;35:951-956.

273

Dawson J, Kiner D, Gardner W 2nd, Swafford R, Nowotarski PJ. The reamer-irrigator-aspirator as a device

274

for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop

275

Trauma 2014;28:584-590.

276

Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, GiannoudisPV. Complications following

277

autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury

278

2011;42:S3-S15.

279

Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast

280

differentiation. Cell 1997;89:747-754.

281

Freeman TA, Patel P, Parvizi J, Antoci V Jr, Shapiro IM, Micro-CT analysis with multiple thresholds allows

282

detection of bone formation and resorption during ultrasound-treated fracture healing J Orthop Res

283

2009;27:673-679.

284

Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JR. Low-intensity pulsed ultrasound increases the

14

285

fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. J Orthop Res

286

2002;20:587-592.

287

Giannoudis PV, Tzioupis C, Green J. Surgical techniques: how I do it? The Reamer/Irrigator/Aspirator

288

(RIA) system. Injury 2009;40:1231-1236

289

Gleizal A, Li S, Pialat JB, Beziat JL. Transcriptional expression of calvarial bone after treatment with low-

290

intensity ultrasound: an in vitro study. Ultrasound Med Biol 2006;32:1569-1574.

291

Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft – complications

292

and functional assessment. Clin Orthop Relat Res 1997;(339):76-81.

293

Harrison A, Lin S, Pounder N, Mikuni-Takagaki Y. Mode & mechanism of low intensity pulsed ultrasound

294

(LIPUS) in fracture repair. Ultrasonics 2016;70:45-52.

295

Hasegawa T, Miwa M, Sakai Y, Niikura T, Kurosaka M, Komori T. Osteogenic activity of human fracture

296

haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. J Bone Joint

297

Surg Br 2009;91:264-270.

298

Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-

299

invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 1994;76:26-34.

300

Higgins TF, Casey V, Bachus K. Cortical heat generation using an irrigating/aspirating single pass reaming

301

vs. conventional stepwise reaming. J Orthop Trauma 2007;21:192-197.

302

Hoellig M, Westhauser F, Kornienko K, Xiao K, Schmidmaier G, Moghaddam A. Mesenchymal stem cells

303

from reaming material possess high osteogenic potential and react sensitively to bone morphogenetic

304

protein 7. J Appl Biomater Funct Mater 2017;15:e54-e62.

305

Ito M, Azuma Y, Ohta T, Komoriya K. Effects of ultrasound and 1,25-dihydroxyvitamin D3 on growth

306

factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med Biol 2000;26:161-166.

15

307

Iwabuchi S, Ito M, Hata J, Chikanishi T, Azuma Y, Haro H. In vitro evaluation of low-intensity pulsed

308

ultrasound in herniated disc resorption. Biomaterials 2005;26:7104-7114.

309

Jingushi S, Mizuno K, Matsushita T, Itoman M. Low-intensity pulsed ultrasound treatment for

310

postoperative delayed unior or nonunion or long bone fractures. J Orthop Sci 2007;12:35-41.

311

Kanakaris NK, Morell D, Gudipati S, Britten S, Giannoudis PV. Reaming irrigator aspirator system: early

312

experience of its multipurpose use. Injury 2011;42:S28-S34.

313

Koga T, Lee SY, Niikura T, Koh A, Dogaki Y, Okumachi E, Akisue T, Kuroda R, Kurosaka M. Effect of

314

low-intensity pulsed ultrasound on bone morphogenetic protein 7-induced osteogenic differentiation of

315

human nonunion tissue-derived cells in vitro. J Ultrasound Med 2013;32:915-922.

316

Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K. Low intensity pulsed ultrasound exposure

317

increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts.

318

Biochem Biophys Res Commun 1999;256:284-287.

319

Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G. RIA fractions contain

320

mesenchymal stroma cells with high osteogenic potency. Injury 2015;46:S23-S32.

321

Le Baron M, Vivona JP, Maman P, Volpi R, Flecher X. Can the Reamer/Irrigator/Aspirator System replace

322

anterior iliac crest grafting when treating long bone nonunion? Orthop Traumatol Surg Res 2019;105:529-

323

533.

324

Lee SY, Miwa M, Sakai Y, Kuroda R, Niikura T, Kurosaka M. Osteogenic potential of cells in vitro derived

325

from haemarthrosis of the knee induced by injury to the anterior cruciate ligament. J Bone Joint Surg Br

326

2006;88:129-133.

327

Lee SY, Koh A, Niikura T, Oe K, Koga T, Dogaki Y, Kurosaka M. Low-intensity pulsed ultrasound

328

enhances BMP-7-induced osteogenic differentiation of human fracture hematomaderived progenitor cells

16

329

in vitro.J Orthop Trauma 2013;27:29-33.

330

Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultrasound stimulates osteogenic

331

activity of human periosteal cells. Clin Orthop Relat Res 2004;418:253-259.

332

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and

333

the 2(-Delta Delta C(T)) method. Methods 2001;25:402-408.

334

Malaval L, Modrowski D, Gupta AK, Aubin JE. Cellular expression of bone-related proteins during in vitro

335

osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 1994;158:555-572

336

Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction of the long bones by the induced

337

membrane and spongy autograft]. Ann Chir Plast Esthet 2000;45:346-353.

338

Miclau T, Sen MK. Autologous iliac crest bone graft: should it still be the gold standard for treating

339

nonunions? Injury 2007;38:S75-S80

340

Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is

341

required for osteoblast differentiation and bone formation. Cell 2002;108:17-29

342

Niikura T, Oe K, Fukui T, Hayashi S, Matsumoto T, Matsushita T, Kuroda R. Clinical experience of the

343

use of reamer irrigator aspirator in Japanese patients: A report of the first 42 cases. J Orthop Sci

344

2021;26:459-65.

345

Noriega S, Mamedov T, Turner JA, Subramanian A. Intermittent applications of continuous ultrasound on

346

the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng

347

2007;13:611-618.

348

Ohtani K, Ogawa T. Expansion wave and cavitation bubble generation by underwater shock wave

349

reflection from the interface. Mech Eng J 2016;3:16-00298

350

Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible

17

351

mechanic effects. Ultrasonics 2014;54:1125-1145.

352

Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences

353

between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest

354

of the same patient. J Bone Joint Surg Am 2012;94:2128-2135.

355

Sabri F, Sebelik ME, Meacham R, Boughter JD Jr, Challis MJ, Leventis N. In vivo ultrasonic detection of

356

polyurea crosslinked silica aerogel implants. PLoS One 2013;8:e66348.

357

Saito M, Soshi S, Tanaka T, Fujii K. Intensity-related differences in collagen post-translational modification

358

in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Bone 2004;35:644-

359

655.

360

Sant’Anna EF, Leven RM, Virdi AS, Sumner DR. Effect of low intensity pulsed ultrasound and BMP-2

361

on rat bone marrow stromal cell gene expression. J Orthop Res 2005;23:646-652.

362

Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B. Quantitative

363

assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 2006;39:1156-

364

1163.

365

Sena K, Leven RM, Mazhar K, Summer DR, Virdi AS. Early gene response to low-intensity pulsed

366

ultrasound in rat osteoblastic cells. Ultrasound Med Biol 2005;31:703-708

367

Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC. In vitro effects of low-intensity ultrasound

368

stimulation on the bone cells. J Biomed Mater Res 2001;57:449-456

369

Toosi S, Esmaeilzadeh Z, Naderi-Meshkin H, Heirani-Tabasi A, Peivandi MT, Behravan J. Adipocyte

370

lineage differentiation potential of MSCs isolated from reaming material. J Cell Physiol 2019;234:20066-

371

20071

372

van der Bel R, Blokhuis TJ. Increased osteogenic capacity of Reamer/Irrigator/Aspirator derived

18

373

mesenchymal stem cells. Injury 2014;45:2060-2064.

374

Wei FY, Leung KS, Li G, Qin J, Chow SKH, Huang S, Sun MH, Qin L, Cheung WH. Low intensity pulsed

375

ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in

376

fracture healing. PLoS One 2014;9:e106722.

377

Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P,

378

Townes TM, Hanauer A, Karsenty G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast

379

biology;implication for Coffin-Lowry Syndrome. Cell 2004;117:387-398.

380

Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989;3:192-195.

381

19

382

Figure Legends

383

Fig. 1A. LIPUS exposure device in vitro. Left images show an array of ultrasound transducer and right

384

images show 6-well culture plate on the array.

385

Fig. 1B. A schematic of LIPUS device. Experimental setup with the key parameters are shown.

386

387

Fig. 2A. RIA graft-derived cells. They are fibroblast-like, spindle, and adhesive.

388

Fig. 2B. Proliferation of RIA graft-derived cells relative to day 0 level on days 2, 4, and 7 (NS, not significant;

389

*p≤ 0.05).

390

391

Fig. 3. Relative ALP activity of RIA graft-derived cells on days 7 and 14. The ALP activity in each sample

392

was expressed relative to the level in the control group on day 7 (*p≤ 0.05).

393

394

Fig. 4. Quantitative real-time polymerase chain reaction analysis of RIA graft-derived cells. The mRNA

395

expression levels of ALP (A), Runx2 (B), OSX (C), OC (D), and ATF4 (E) were evaluated and normalized

396

by the mRNA expression level of glyceraldehyde-3-phosphate dehydrogenase. The mRNA levels are

397

expressed relative to those for the controls on day 0 (value set at 1 for each marker, *p≤ 0.05).

398

399

Fig. 5. Alizarin Red S staining of the LIPUS and control groups at day 21. Photographs show that the control

400

cells (A) had less Alizarin Red S staining than the LIPUS-treated cells (B). The intensity of Alizarin Red S

401

staining in the LIPUS group was expressed relative to the level in the control group (C; *p≤ 0.05).

402

403

20

404

Table 1. Clinical data of the seven patients

Patient Gender

Age

Disease

Comorbidity

Smoking

(cigarettes/day,

years)

Other factors

affecting

osteogenic activity

55

Non-infected nonunion/Tibia

Hypertension

20, 35

51

Chronic osteomyelitis/Femur

30, 5

42

Acute osteomyelitis/Tibia

54

Acute osteomyelitis/Femur

Alcoholic liver disease

20, 35

40

Non-infected nonunion/Tibia

10, 20

60

Infected nonunion/Tibia

20, 20

44

Infected nonunion/Tibia

20, 25

405

21

406

22

407

408

Table 2. Acoustic impedance value of each material

Material

Acoustic impedance

Z, kg/(m2s)

Air

428.6

Water

1.50×106

Polystyrene

2.37×106

Silicone

1.50×106

409

23

410

Table 3. Quantitative data on acoustic output measurement

Manufacturer's

Characteristics

Measured

Characteristics

ISATA, mW/cm2

30.0

28.0

Frequency, MHz

1.5

1.5

200

200

Parameter

Pulse repetition rate, kHz

Pulse duration, μS

411

ISATA : spatial-average temporal-average intensity

24

412

Table 4. Details of the primers used for amplification

Gene

Primer sequences (5' to 3') (forward/reverse)

ALP

CTCGTTGACACCTGGAAGAGCTTCAAACCG

GGTCCGTCACGTTGTTCCTGTTCAGC

Runx2

ATGCTTCATTCGCCTCACAAAC

CCAAAAGAAGTTTTGCTGACATGG

OSX

CGGGACTCAACAACTCT

CCATAGGGGTGTGTCAT

OC

CATGAGAGCCCTCACA

AGAGCGACACCCTAGAC

ATF4

CTGACCACGTTGGATGACAC

GGGCTCATACAGATGCCTCT

GAPDH

CGTCTTCACCACCATGGAGA

CGGCCATCACGCCACAGTTT

413

*ALP, alkaline phosphatase; Runx2, runt-related transcription factor 2; OSX, osterix; OC, osteocalcin;

414

ATF4, activating transcription factor 4; GAPDH, glyceraldehyde-3-phosphate dehydrogenase

415

25

Fig. 1A

Fig. 1B

Fig. 2A

Fig. 2B

10

11

12

13

14

Fig. 3

15

16

17

Fig. 4A (ALP)

Fig. 4B (Runx2)

Fig. 4C (OSX)

Fig. 4D (OC)

18

19

20

21

22

Fig. 4E (ATF4)

23

24

25

Fig. 5A

Fig. 5B

26

27

28

Fig. 5C

29

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る