リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of low-intensity pulsed ultrasound on osteogenic differentiation of human induced membrane-derived cells in Masquelet technique」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of low-intensity pulsed ultrasound on osteogenic differentiation of human induced membrane-derived cells in Masquelet technique

Takase, Kyohei Fukui, Tomoaki Oe, Keisuke Sawauchi, Kenichi Yoshikawa, Ryo Yamamoto, Yuya Hayashi, Shinya Matsumoto, Tomoyuki Kuroda, Ryosuke Niikura, Takahiro 神戸大学

2023.06

概要

Introduction: The Masquelet technique is a relatively new method for large bone defect treatment. In this technique, grafted bone tissue is used, and after the cement is removed, the induced membrane (IM; that form around the cement spacers placed in the bone defect region) is thought to play an important role in promoting bone formation. On the other hand, low-intensity pulsed ultrasound (LIPUS) is known to promote fracture healing and angiogenesis through mechanical stimulation. This study aimed to investigate the in vitro effects of LIPUS on the osteogenic differentiation of human induced membrane-derived cells (IMCs). Methods: Seven patients who had been treated using the Masquelet technique were enrolled. The IM was harvested during the second stage of the technique. IMCs were isolated, cultured in growth medium, and then divided into two groups: (1) control group, IMCs cultured in osteogenic medium without LIPUS, and (2) LIPUS group, IMCs cultured in osteogenic medium with LIPUS treatment. Adherent cells from the IM samples were harvested after the first passage and evaluated for cell surface protein expression using immunostaining. A cell proliferation assay was used to count the number of IMCs using a hemocytometer. Osteogenic differentiation capability was assessed using an alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, and real-time reverse transcription-polymerase chain reaction. Results: Cell surface antigen profiling revealed that the IMCs contained cells positive for the mesenchymal stem cell–related markers CD73, CD90, and CD105. No significant difference in cell numbers was found between the control and LIPUS groups. The ALP activity of IMCs in the LIPUS group was significantly higher than that in the control group on days 7 and 14. Alizarin red S staining intensity was significantly higher in the LIPUS group than in the control group on day 21. Runx2 and VEGF expression was significantly upregulated on days 7 and 14, respectively, compared with levels in the control group. Conclusion: We demonstrated the significant effect of LIPUS on the osteogenic differentiation of human IMCs. This study indicates that LIPUS can be used as an additional tool for the enhancement of the healing process of the Masquelet technique.

この論文で使われている画像

参考文献

[1] Aktuglu K, Erol K, Vahabi A. Ilizarov bone transport and treatment of criticalsized tibial bone defects: a narrative review. J Orthop Traumatol 2019;20:22.

doi:10.1186/s10195-019- 0527- 1.

[2] Cano-Luís P, Andrés-Cano P, Ricón-Recarey FJ, Giráldez-Sánchez MA. Treatment

of posttraumatic bone defects of the forearm with vascularized fibular grafts.

Follow up after fourteen years. Injury 2018;49(Suppl 2):S27–35. doi:10.1016/j.

injury.2018.07.021.

[3] Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long

bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet

20 0 0;45:346–53.

[4] Masquelet AC, Begue T. The concept of induced membrane for reconstruction

of long bone defects. Orthop Clin North Am 2010;41:27–37 table of contents.

doi:10.1016/j.ocl.2009.07.011.

[5] Chong KW, Woon CYL, Wong MK. Induced membranes-a staged technique of

bone-grafting for segmental bone loss: surgical technique. J Bone Joint Surg

Am 2011;93(Suppl 1):85–91. doi:10.2106/JBJS.J.01251.

[6] Masquelet AC, Kishi T, Benko PE. Very long-term results of post-traumatic bone

defect reconstruction by the induced membrane technique. Orthop Traumatol

Surg Res 2019;105:159–66. doi:10.1016/j.otsr.2018.11.012.

[7] Gaio N, Martino A, Toth Z, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet

Technique: the effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect

model. J Biomech 2018;72:53–62. doi:10.1016/j.jbiomech.2018.02.026.

Funding

This research did not receive any specific grant from funding

agencies in the public, commercial, or not-for-profit sectors.

Ethics Approval

All protocols of this study were approved by the Ethics Committee of Kobe University Graduate School of Medicine (Kobe, Japan)

(approval number: B20 0 051).

Declaration of Competing Interest

None.

1449

K. Takase, T. Fukui, K. Oe et al.

Injury 54 (2023) 1444–1450

[8] Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier

membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 2012;10:81. doi:10.

1186/1741- 7015- 10- 81.

[9] Gruber HE, Riley FE, Hoelscher GL, Bayoumi EM, Ingram JA, Ramp WK, et al.

Osteogenic and chondrogenic potential of biomembrane cells from the PMMAsegmental defect rat model. J Orthop Res 2012;30:1198–212. doi:10.1002/jor.

22047.

[10] Henrich D, Seebach C, Nau C, Basan S, Relja B, Wilhelm K, et al. Establishment

and characterization of the Masquelet induced membrane technique in a rat

femur critical-sized defect model. J Tissue Eng Regen Med 2016;10:E382–96.

doi:10.1002/term.1826.

[11] Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskelä HV. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am

2013;95:597–604. doi:10.2106/JBJS.L.00310.

[12] Niikura T, Jimbo N, Komatsu M, Oe K, Fukui T, Matsumoto T, et al. Histological analysis of induced membranes in patients whose bone defects were

treated with the Masquelet technique to identify factors affecting the vascularity of induced membranes. J Orthop Surg Res 2021;16:248. doi:10.1186/

s13018- 021- 02404- 7.

[13] Niikura T, Oda T, Jimbo N, Komatsu M, Oe K, Fukui T, et al. Immunohistochemical analysis revealed the expression of bone morphogenetic proteins-4,

6, 7, and 9 in human induced membrane samples treated with the Masquelet

technique. J Orthop Surg Res 2022;17:29. doi:10.1186/s13018- 022- 02922- y.

[14] Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors

and could stimulate bone regeneration. J Orthop Res 2004;22:73–9. doi:10.

1016/S0736-0266(03)00165-7.

[15] Gruber HE, Ode G, Hoelscher G, Ingram J, Bethea S, Bosse MJ. Osteogenic, stem

cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–15. doi:10.1302/2046-3758.

54.20 0 0483.

[16] Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants a review of the implications for the design of immunomodulatory biomaterials.

Biomaterials 2011;32:6692–709. doi:10.1016/j.biomaterials.2011.05.078.

[17] Rubin C, Bolander M, Ryaby JP, Hadjiargyrou M. The use of low-intensity

ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am

2001;83:259–70. doi:10.2106/00004623-200102000-00015.

[18] Griffin XL, Costello I, Costa ML. The role of low intensity pulsed ultrasound

therapy in the management of acute fractures: a systematic review. J Trauma

2008;65:1446–52. doi:10.1097/TA.0b013e318185e222.

[19] Sant’Anna EF, Leven RM, Virdi AS, Sumner DR. Effect of low intensity pulsed

ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res 2005;23:646–52. doi:10.1016/j.orthres.2004.09.007.

[20] Barzelai S, Sharabani-Yosef O, Holbova R, Castel D, Walden R, Engelberg S, et al.

Low-intensity ultrasound induces angiogenesis in rat hind-limb ischemia. Ultrasound Med Biol 2006;32:139–45. doi:10.1016/j.ultrasmedbio.2005.08.010.

[21] Harrison A, Lin S, Pounder N, Mikuni-Takagaki Y. Mode & mechanism of low

intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 2016;70:45–

52. doi:10.1016/j.ultras.2016.03.016.

[22] Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res 2004;418:253–9. doi:10.1097/00003086-200401000-00044.

[23] Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV.

Induced periosteum a complex cellular scaffold for the treatment of large bone

defects. Bone 2013;57:484–92. doi:10.1016/j.bone.2013.08.009.

[24] Koga T, Lee SY, Niikura T, Koh A, Dogaki Y, Okumachi E, et al. Effect of

low- intensity pulsed ultrasound on bone morphogenetic protein 7-induced

osteogenic differentiation of human nonunion tissue-derived cells in vitro. J

Ultrasound Med 2013;32:915–22. doi:10.7863/ultra.32.6.915.

[25] Lee SY, Koh A, Niikura T, Oe K, Koga T, Dogaki Y, et al. Low-intensity pulsed

ultrasound enhances BMP-7-induced osteogenic differentiation of human fracture hematoma-derived progenitor cells in vitro. J Orthop Trauma 2013;27:29–

33. doi:10.1097/BOT.0b013e3182519492.

[26] Hasegawa T, Miwa M, Sakai Y, Niikura T, Kurosaka M, Komori T. Osteogenic

activity of human fracture haematoma-derived progenitor cells is stimulated

by low-intensity pulsed ultrasound in vitro. J Bone Joint Surg Br 2009;91:264–

70. doi:10.1302/0301-620X.91B2.20827.

[27] Sawauchi K, Fukui T, Oe K, Kumabe Y, Oda T, Yoshikawa R, et al. Low-intensity

pulsed ultrasound promotes osteogenic differentiation of reamer-irrigatoraspirator graft-derived cells in vitro. Ultrasound Med Biol 2022;48:313–22.

doi:10.1016/j.ultrasmedbio.2021.10.006.

[28] Iwabuchi S, Ito M, Hata J, Chikanishi T, Azuma Y, Haro H. In vitro evaluation

of low-intensity pulsed ultrasound in herniated disc resorption. Biomaterials

2005;26:7104–14. doi:10.1016/j.biomaterials.2005.05.004.

[29] Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial

fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint

Surg Am 1994;76:26–34. doi:10.2106/0 0 0 04623-1994010 0 0-0 0 0 04.

[30] Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual

and automated methods. Methods Mol Biol 2011;740:7–12. doi:10.1007/

978- 1- 61779- 108- 6_2.

[31] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods

2001;25:402–8. doi:10.1006/meth.2001.1262.

[32] Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G. Treatment of

atrophic tibia non-unions according to “diamond concept”: results of oneand two-step treatment. Injury 2015;46:S39–50. doi:10.1016/S0020-1383(15)

30017-6.

[33] Careri S, Vitiello R, Oliva MS, Ziranu A, Maccauro G, Perisano C. Masquelet

technique and osteomyelitis: innovations and literature review. Eur Rev Med

Pharmacol Sci 2019;23:210–16. doi:10.26355/eurrev_201904_17495.

[34] Masquelet AC, Kanakaris NK, Obert L, Stafford P, Giannoudis PV. Bone repair

using the masquelet technique. J Bone Joint Surg Am 2019;101:1024–36. http:

//doi.org/10.2106/JBJS.18.00842.

[35] Wang X, Wei F, Luo F, Huang K, Xie Z. Induction of granulation tissue for the

secretion of growth factors and the promotion of bone defect repair. J Orthop

Surg Res 2015;10:147. http://doi.org/10.1186/s13018- 015- 0287- 4.

[36] Tang Q, Tong M, Zheng G, Shen L, Shang P, Liu H. Masquelet’s induced membrane promotes the osteogenic differentiation of bone marrow mesenchymal

stem cells by activating the Smad and MAPK pathways. Am J Transl Res

2018;10:1211–19.

[37] Coords M, Breitbart E, Paglia D, Kappy N, Gandhi A, Cottrell J, et al. The effects

of low-intensity pulsed ultrasound upon diabetic fracture healing. J Orthop Res

2011;29:181–8. http://doi.org/10.1002/jor.21223.

[38] Wei FY, Leung KS, Li G, Qin J, Chow SK, Huang S, et al. Low intensity pulsed

ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS ONE 2014;9. e106722 http:

//doi.org/10.1371/journal.pone.0106722 .

[39] Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K. Daily low-intensity

pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta

Biochim Biophys Sin (Shanghai) 2009;41:108–15. http://doi.org/10.1093/abbs/

gmn012.

[40] Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, et al. Roles

of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 1999;10:3801–13. http:

//doi.org/10.1091/mbc.10.11.3801.

[41] Noriega S, Mamedov T, Turner JA, Subramanian A. Intermittent applications of

continuous ultrasound on the viability, proliferation, morphology, and matrix

production of chondrocytes in 3D matrices. Tissue Eng 2007;13:611–18. http:

//doi.org/10.1089/ten.2006.0130.

1450

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る