リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interferometer Locking Scheme for Advanced Gravitational-Wave Detectors and Beyond」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interferometer Locking Scheme for Advanced Gravitational-Wave Detectors and Beyond

榎本, 雄太郎 東京大学 DOI:10.15083/0002004679

2022.06.22

概要

Since the first observation, direct observations of gravitational waves (GWs) by currently operating ground-based interferometric detectors have brought unique astrophysical information. It is expected that the planned detectors, namely the third generation detectors, which are about ten times more sensitive than the current detectors, will provide significant advances in GW astronomy. Current GW detectors, such as Advanced LIGO, Advanced Virgo, and KAGRA, require multiply coupled optical cavities to be controlled at their resonances. Thus the lock acquisition process, where all the cavities are brought to their operation points against the cross-coupling of the cavities, is essential for their operation and astrophysical observation. In particular, it is the most challenging to achieve the resonances of the arm cavities, because the kilometer-long arms result in narrow frequency linewidths; the arm cavity provides meaningful error signals only within its linewidth. In the third generation detectors, which will have longer arms leading to narrower linewidths, the lock acquisition process will be even more challenging. In lock acquisition of Advanced LIGO, a scheme called arm length stabilization (ALS) has been used, where auxiliary lasers having different wavelength than that of the main laser independently control the arms within their linewidths in a decoupled way. However, it is not trivial to scale up the system of Advanced LIGO to the third generation detectors due to the configuration of the system; optical fibers having the same length to the arms are involved, and thus to scale it up would increase optical phase noise and loss in the fibers.

To address this issue, a new type of the ALS system was designed for KAGRA. The new configuration is simple with significantly shorter fiber length and thus it is compatible with the third generation detectors. Along with a design study on the noise performance, an experimental test of the new ALS system was performed in KAGRA. The test revealed that the residual fluctuations of the arm cavities were evaluated to be less than 5 Hz in terms of root mean square, which are smaller than the linewidth of the arm. With this level of the noise performance, lock acquisition of the Fabry–Perot Michelson interferometer of KAGRA was achieved using the ALS system (Figure 2). This achievement demonstrated that the system is ready for bringing the KAGRA full interferometer to the operation mode as soon as the other part of the interferometer is available.

Utilizing the results obtained in KAGRA, the performance of the ALS system in third generation detectors was simulated, along with discussions on necessary modifications to the KAGRA ALS system. The necessary modifications include new schemes for controlling one laser to follow another under the condition that their wavelengths are different (Figure 3). The results indicated that lock acquisition of third generation detectors will be feasible by scaling the KAGRA ALS system. We also point out that a new scheme with a sub-carrier field will make the lock acquisition process more reliable.

参考文献

[1] A. Einstein, N¨aherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsber. K. Preuss. Akad. Wiss., 1 688, (1916).

[2] A. Einstein, Uber Gravitationswellen ¨ . Sitzungsber. K. Preuss. Akad. Wiss., 1 154, (1918).

[3] J. D. Creighton and W. G. Anderson. Gravitational-Wave Physics and Astronomy. John Wiley & Sons, (2012).

[4] M. Maggiore. Gravitational Waves. Vol.1, Theory and Experiments. Oxford Univ. Press, (2008).

[5] B. P. Abbott et al. , Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116 061102, (2016).

[6] B. P. Abbott et al. , GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119(16) 161101, (2017).

[7] M. Punturo et al. , The Einstein Telescope: A third-generation gravitational wave observatory. Classical and Quantum Gravity, 27(19) 194002, (2010).

[8] B. P. Abbott et al. , Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 34(4) 044001, (2017).

[9] B. P. Abbott et al. , GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 9(3) 031040, (2019).

[10] J. M. Corral-Santana et al. , BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astronomy & Astrophysics, 587 A61, (2016).

[11] LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-Ray Burst Monitor, and INTEGRAL, Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters, 848(2) L13, (2017).

[12] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Physical Review D, 81(12) 123016, (2010).

[13] K. Hotokezaka, K. Kyutoku, Y.-i. Sekiguchi, and M. Shibata, Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars. Physical Review D, 93(6) 064082, (2016).

[14] C. D. Ott, The gravitational-wave signature of core-collapse supernovae. Classical and Quantum Gravity, 26(6) 063001, (2009).

[15] V. Roma, J. Powell, I. S. Heng, and R. Frey, Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors. Physical Review D, 99(6) 063018, (2019).

[16] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and B. S. Sathyaprakash, Testing the no-hair theorem with black hole ringdowns using TIGER. Physical Review D, 90(6) 064009, (2014).

[17] H. Takeda et al. , Prospects for gravitational-wave polarization tests from compact binary mergers with future ground-based detectors. Physical Review D, 100(4) 042001, (2019).

[18] J. Aasi et al. , Advanced LIGO. Classical and Quantum Gravity, 32(7) 074001, (2015).

[19] F. Acernese et al. , The Advanced Virgo detector. Journal of Physics: Conference Series, 610 012014, (2015).

[20] K. Somiya, Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector. Classical and Quantum Gravity, 29(12) 124007, (2012).

[21] K. Izumi et al. , Multicolor cavity metrology. Journal of the Optical Society of America A, 29(10) 2092, (2012).

[22] A. Staley et al. , Achieving resonance in the Advanced LIGO gravitationalwave interferometer. Classical and Quantum Gravity, 31(24) 245010, (2014).

[23] KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration et al. , Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 21(1) 3, (2018).

[24] T. Akutsu et al. , Construction of KAGRA: An underground gravitationalwave observatory. Prog. Theor. Exp. Phys., 2018(1) 013F01, (2018).

[25] T. Akutsu et al. , First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 36(16) 165008, (2019).

[26] R. A. Hulse and J. H. Taylor, Discovery of a pulsar in a binary system. The Astrophysical Journal, 195 L51, (1975).

[27] J. H. Taylor and J. M. Weisberg, A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16. The Astrophysical Journal, 253 908, (1982).

[28] B. P. Abbott et al. , GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence B. Physical Review Letters, 119(14) 1–16, (2017).

[29] W. M. Farr et al. , Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature, 548(7668) 426–429, (2017).

[30] B. P. Abbott et al. , Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. The Astrophysical Journal, 882(2) L24, (2019).

[31] D. Gerosa and E. Berti, Are merging black holes born from stellar collapse or previous mergers? Physical Review D, 95(12) 124046, (2017).

[32] M. Zevin et al. , Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations. The Astrophysical Journal, 846(1) 82, (2017).

[33] B. P. Abbott et al. , Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters, 848(2) L12, (2017).

[34] A. Goldstein et al. , An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A. The Astrophysical Journal, 848(2) L14, (2017).

[35] V. A. Villar et al. , The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications. The Astrophysical Journal, 851(1) L21, (2017).

[36] B. S. Sathyaprakash and B. F. Schutz, Physics, astrophysics and cosmology with gravitational waves. Living Reviews in Relativity, 12, (2009).

[37] C. D. Ott, Probing the core-collapse supernova mechanism with gravitational waves. Classical and Quantum Gravity, 26(20) 204015, (2009).

[38] B. P. Abbott et al. , Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. The Astrophysical Journal, 879(1) 10, (2019).

[39] S. M. Koushiappas and A. R. Zentner, Testing Models of Supermassive Black Hole Seed Formation through Gravity Waves. The Astrophysical Journal, 639(1) 7–22, (2006).

[40] C. Caprini and D. G. Figueroa, Cosmological backgrounds of gravitational waves. Classical and Quantum Gravity, 35(16) 163001, (2018).

[41] H. Yu et al. , Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors. Physical Review Letters, 120(14) 141102, (2018).

[42] P. Amaro-Seoane, Laser Interferometer Space Antenna, (2017). arxiv:1702.00786.

[43] S. Kawamura et al. , The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 23(8) S125–S131, (2006).

[44] J. Weber, Gravitational-Wave-Detector Events. Physical Review Letters, 20(23) 1307–1308, (1968).

[45] O. D. Aguiar, Past, present and future of the Resonant-Mass gravitational wave detectors. Research in Astronomy and Astrophysics, 11(1) 1–42, (2011).

[46] M. Ando et al. , Torsion-Bar Antenna for Low-Frequency GravitationalWave Observations. Physical Review Letters, 105(16) 161101, (2010).

[47] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Atomic gravitational wave interferometric sensor. Physical Review D, 78(12) 122002, (2008).

[48] B. Canuel et al. , Exploring gravity with the MIGA large scale atom interferometer. Scientific Reports, 8(1) 14064, (2018).

[49] M.-S. Zhan et al. , ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. International Journal of Modern Physics D, page 1940005, (2019).

[50] D. Gao, J. Wang, and M. Zhan, Atomic Interferometric Gravitational-wave Space Observatory (AIGSO). Communications in Theoretical Physics, 69(1) 37, (2018).

[51] W. Qin, K. K. Boddy, M. Kamionkowski, and L. Dai, Pulsar-timing arrays, astrometry, and gravitational waves. Physical Review D, 99(6) 063002, (2019).

[52] C. J. Moore, S. R. Taylor, and J. R. Gair, Estimating the sensitivity of pulsar timing arrays. Classical and Quantum Gravity, 32(5) 055004, (2015).

[53] R. Weiss, Electromagnetically Coupled Broadband Gravitational Antenna, (1972). LIGO DCC, P720002-01-R.

[54] H. Takeda et al. , Polarization test of gravitational waves from compact binary coalescences. Physical Review D, 98(2) 022008, (2018).

[55] G. Losurdo et al. , An inverted pendulum preisolator stage for the VIRGO suspension system. Review of Scientific Instruments, 70(5) 2507–2515, (1999).

[56] G. Cella, V. Sannibale, R. DeSalvo, S. M´arka, and A. Takamori, Monolithic geometric anti-spring blades. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 540(2-3) 502–519, (2005).

[57] C. Gardiner and M. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Physical Review A, 31(6) 3761–3774, (1985).

[58] Y. Levin, Internal thermal noise in the LIGO test masses: A direct approach. Physical Review D, 57 659, (1998).

[59] K. Komori et al. , Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions. Physical Review D, 97(10) 102001, (2018).

[60] T. Uchiyama et al. , Reduction of Thermal Fluctuations in a Cryogenic Laser Interferometric Gravitational Wave Detector. Physical Review Letters, 108(14) 141101, (2012).

[61] F. Acernese et al. , Advanced Virgo: A second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2) 024001, (2015).

[62] C. M. Caves, Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer. Physical Review Letters, 45(2) 75–79, (1980).

[63] E. Oelker et al. , Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors. Physical Review Letters, 116(4) 041102, (2016).

[64] E. Capocasa et al. , Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Physical Review D, 98(2) 022010, (2018).

[65] J. Cripe et al. , Radiation-pressure-mediated control of an optomechanical cavity. Physical Review A, 97(1) 013827, (2018).

[66] M. J. Yap et al. , Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nature Photonics, (2019).

[67] K. Komori, Optomechanical Torsion Pendulum for Measurement of Quantum Radiation Pressure Fluctuation. Ph.D. thesis, Univ. of Tokyo, Tokyo, (2019).

[68] K. Nagano, Y. Enomoto, M. Nakano, A. Furusawa, and S. Kawamura, Mitigation of radiation-pressure-induced angular instability of a Fabry–Perot cavity consisting of suspended mirrors. Physics Letters A, 11(12) 261–5, (2016).

[69] H. Miao, R. X. Adhikari, Y. Ma, B. Pang, and Y. Chen, Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals. Physical Review Letters, 119(5) 1–6, (2017).

[70] B. Pang and Y. Chen, Fundamental relations between measurement, radiation, and decoherence in gravitational wave laser interferometer detectors. Physical Review D, 99(12) 124016, (2019).

[71] B. P. Abbott et al. , Tests of General Relativity with GW150914. Physical Review Letters, 116(22) 221101, (2016).

[72] M. Isi, M. Giesler, W. M. Farr, M. A. Scheel, and S. A. Teukolsky, Testing the No-Hair Theorem with GW150914. Physical Review Letters, 123(11) 111102, (2019).

[73] P. S. Cowperthwaite et al. , The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. The Astrophysical Journal, 848(2) L17, (2017).

[74] D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star mergers from a gravitationalwave event. Nature, 551(7678) 80–84, (2017).

[75] M. Nicholl et al. , The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. The Astrophysical Journal, 848(2) L18, (2017).

[76] B. P. Abbott et al. , A gravitational-wave standard siren measurement of the Hubble constant. Nature, 551 85–88, (2017).

[77] K. Hotokezaka et al. , A Hubble constant measurement from superluminal motion of the jet in GW170817. Nature Astronomy, (2019).

[78] Updated Advanced LIGO sensitivity design curve, (2018). Data from LIGO DCC, T1800044-v5.

[79] Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced virgo and KAGRA, (2018). Data from LIGO DCC, P1200087-v47.

[80] Latest estimated sensitivity of KAGRA, (2017). Data from JGWdoc, T1707038-v9.

[81] A. Abramovici et al. , LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science, 256(5055) 325–333, (1992).

[82] B. P. Abbott et al. , LIGO: The Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7) 076901, (2009).

[83] C. S. Unnikrishnan, IndIGO AND LIGO-INDIA: SCOPE AND PLANS FOR GRAVITATIONAL WAVE RESEARCH AND PRECISION METROLOGY IN INDIA. International Journal of Modern Physics D, 22(01) 1341010, (2013).

[84] India Approves Construction of Third LIGO Observatory!, Web page. https://www.ligo.caltech.edu/news/ligo20160217.

[85] LLO aLIGO logbook 46825. Technical report, (2019). https://alog.ligola.caltech.edu/aLOG/index.php?callRep=46825.

[86] T. Accadia et al. , Virgo: A laser interferometer to detect gravitational waves. Journal of Instrumentation, 7(03) P03012–P03012, (2012).

[87] N. Tominaga et al. , Subaru Hyper Suprime-Cam Survey for an optical counterpart of GW170817‡. Publications of the Astronomical Society of Japan, 70(2), (2018).

[88] L. Wen and Y. Chen, Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Physical Review D, 81(8) 082001, (2010).

[89] S. Hild et al. , Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 28(9) 094013, (2011).

[90] M. A. Bizouard, LIGO-Virgo status: O3 observing run and beyond. Presented at Transient Sky 2020, Paris, France, (2019).

[91] S. Haino and Y.-J. Huang, O3 simulation (N=2, 3, 4 cases), (2019). JGWdoc, JGW-G1910190-v14.

[92] M. Punturo, ET letter of intent, Web page, (2018). http://www.etgw.eu/index.php/letter-of-intent.

[93] D. Reitze et al. , Cosmic Explorer: The U.S. Contribution to GravitationalWave Astronomy beyond LIGO, (2019). arxiv:1907.04833.

[94] D. Lai, F. A. Rasio, and S. L. Shapiro, Hydrodynamic Instability and Coalescence of Binary Neutron Stars. The Astrophysical Journal, 420 811, (1994).

[95] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-Bielich, New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. Physical Review Letters, 120(26) 261103, (2018).

[96] K. Hotokezaka et al. , Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform. Physical Review D, 88(4) 044026, (2013).

[97] H. Yang et al. , Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Physical Review D, 97(2) 024049, (2018).

[98] D. M. Eardley, D. L. Lee, and A. P. Lightman, Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity. Physical Review D, 8(10) 3308–3321, (1973).

[99] D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity. Physical Review Letters, 30(18) 884–886, (1973).

[100] Planck Collaboration et al. , Planck 2015 results: XIII. Cosmological parameters. Astronomy & Astrophysics, 594 A13, (2016).

[101] A. G. Riess et al. , A 2.4% Determination of the Local Value of the Hubble Constant. The Astrophysical Journal, 826(1) 56, (2016).

[102] B. F. Schutz, Determining the Hubble constant from gravitational wave observations. Nature, 323(6086) 310–311, (1986).

[103] J. Mendon¸ca and R. Sturani, Cosmological model selection from standard siren detections by third generation gravitational wave obervatories. arXiv:1905.03848 [astro-ph, physics:gr-qc], (2019).

[104] X.-N. Zhang, L.-F. Wang, J.-F. Zhang, and X. Zhang, Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope. Physical Review D, 99(6) 063510, (2019).

[105] M. Du, W. Yang, L. Xu, S. Pan, and D. F. Mota, Future constraints on dynamical dark-energy using gravitational-wave standard sirens. Physical Review D, 100(4) 043535, (2019).

[106] Unofficial sensitivity curves (ASD) for aLIGO, kagra, virgo, voyager, cosmic explorer and ET, (2015). Data from LIGO DCC, T1500293-v12.

[107] T. T. Fricke et al. , DC readout experiment in Enhanced LIGO. Classical and Quantum Gravity, 29(6) 065005, (2012).

[108] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Physical Review D, 65(2) 022002, (2002).

[109] J. Miller et al. , Prospects for doubling the range of Advanced LIGO. Physical Review D, 91(6) 062005, (2015).

[110] LIGO Scientific Collaboration, Instrument Science White Paper 2018, (2018). LIGO DCC, T1800133–v3.

[111] L. Schnupp, Internal modulation schemes. Presneted at European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy, (1988).

[112] R. W. P. Drever et al. , Laser phase and frequency stabilization using an optical resonator. Applied Physics B Photophysics and Laser Chemistry, 31(2) 97–105, (1983).

[113] B. J. Meers, Recycling in laser-interferometric gravitational-wave detectors. Physical Review D, 38(8) 2317–2326, (1988).

[114] J. Mizuno et al. , Resonant sideband extraction: A new configuration for interferometric gravitational wave detectors. Physics Letters A, 175(5) 273–276, (1993).

[115] D. Walls, Squeezed states of light. Nature, 306(10) 141–146, (1983).

[116] M. Tse et al. , Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 123(23) 231107, (2019).

[117] F. Acernese et al. , Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 123(23) 231108, (2019).

[118] J. Degallaix, Adv+. Presented at Gravitational Wave Advanced Detector Workshop 2019, Elba Island, Italy, (2019).

[119] A. Buonanno and Y. Chen, Quantum noise in second generation, signalrecycled laser interferometric gravitational-wave detectors. Physical Review D, 64(4) 1–21, (2001).

[120] A. Buonanno and Y. Chen, Scaling law in signal recycled laserinterferometer gravitational-wave detectors. Physical Review D, 67(6) 062002, (2003).

[121] Z. Li, R. Bennett, and G. Stedman, Swept-frequency induced optical cavity ringing. Optics Communications, 86(1) 51–57, (1991).

[122] J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, Analytical and experimental study of ringing effects in a Fabry–Perot cavity Application to the measurement of high finesses. Journal of the Optical Society of America B, 14(11) 2811, (1997).

[123] M. Rakhmanov, R. L. Savage, D. H. Reitze, and D. B. Tanner, Dynamic resonance of light in Fabry-Perot cavities. Physics Letters, Section A: General, Atomic and Solid State Physics, 305(5) 239–244, (2002).

[124] M. Ando, Power Recycling for an Interferometric Gravitational Wave Detector. Ph.D. thesis, Univ. of Tokyo, (1998).

[125] K. Arai and TAMA Collaboration, Sensing and controls for power-recycling of TAMA300. Classical and Quantum Gravity, 19(7) 1843–1848, (2002).

[126] M. Evans et al. , Lock acquisition of a gravitational-wave interferometer. Optics Letters, 27(8) 598, (2002).

[127] F. Acernese et al. , The variable finesse locking technique. Classical and Quantum Gravity, 23(8) S85–S89, (2006).

[128] A. J. Mullavey et al. , Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. Optics Express, 20(1) 81, (2012).

[129] T. Akutsu et al. , An arm length stabilization system for KAGRA and future gravitational-wave detectors, (2019). arxiv:1910.00955, Accepted by Classical and Quantum Gravity.

[130] L. Barsotti, The Control of the Virgo Interferometer for Gravitational Wave Detection. Ph.D. thesis, University of Pisa, (2006).

[131] D. A. Shaddock, Digitally enhanced heterodyne interferometry. Optics Letters, 32(22) 3355, (2007).

[132] O. P. Lay, S. Dubovitsky, D. A. Shaddock, and B. Ware, Coherent rangegated laser displacement metrology with compact optical head. Optics Letters, 32(20) 2933, (2007).

[133] M. Mantovani, Personal communication, (2019).

[134] A. Staley, K. Izumi, and S. Ballmer, ALS Noise Measurements and Model for HIFO-Y, (2013). LIGO DCC, LIGO-T1300688.

[135] D. Martynov, Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers. Ph.D. thesis, (2015).

[136] K. Okutomi, Development of 13.5-Meter-Tall Vibration Isolation System for the Main Mirrors in KAGRA. Ph.D. thesis, SOKENDAI University, Kanagawa, (2019).

[137] T. Sekiguchi, A Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors. Ph.D. thesis, The University of Tokyo, (2015).

[138] Y. Akiyama et al. , Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 36(9) 095015, (2019).

[139] M. Nakano, Development of input optics for the gravitational wave detector KAGRA. Ph.D. thesis, The University of Tokyo, (2018).

[140] K. Yamamoto et al. , Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors. Classical and Quantum Gravity, 36 205009, (2019).

[141] Y. Aso et al. , Interferometer design of the KAGRA gravitational wave detector. Physical Review D, 88(4) 043007, (2013).

[142] Y. Enomoto and Y. Miyazaki. KAGRA logbook 7332. Technical report, (2018). http://klog.icrr.u-tokyo.ac.jp/osl/?r=7332.

[143] Y. Enomoto. KAGRA logbook 9505. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9505.

[144] T. Yokozawa and Y. Enomoto. KAGRA logbook 9052, 9211, 9496. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9052, http://klog.icrr.u-tokyo.ac.jp/osl/?r=9211, http://klog.icrr.utokyo.ac.jp/osl/?r=9496.

[145] Optical parameters, Web page. http://gwwiki.icrr.utokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/MIF/OptParam, visited in 2019.

[146] E. Hirose, Personal communication, (2019), Reflectivity of each test mass at 532 nm was given.

[147] Y. Enomoto, M. Nakano, and K. Kokeyama. KAGRA logbook 9276. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9276.

[148] E. Capocasa, Y. Enomoto, and S. Ballmer. KAGRA logbook 9246. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9246.

[149] Y. Enomoto and T.-L. T. Tsang. KAGRA logbook 9073. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9073.

[150] IOO optical parameters, Web page. http://gwwiki.icrr.utokyo.ac.jp/JGWwiki/KAGRA/Subgroups/IOO/OptParam, visited in 2019.

[151] Y. Michimura. KAGRA logbook 618. Technical report, (2016). http://klog.icrr.u-tokyo.ac.jp/osl/?r=618.

[152] K. Miyo, Seismic noise of KAGRA mine, (2019). JGWdoc, JGWT1910436-v5 (Internal).

[153] S. Nagano et al. , Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector. Review of Scientific Instruments, 74(9) 4176–4183, (2003).

[154] Green Lock Noise Budget, Web page. https://granite.phys.s.utokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/GreenLock/.

[155] D. Sigg, Low noise VCO specifications, (2011). LIGO DCC, E1101019-v1.

[156] N. Uehara and K. Ueda, Ultrahigh-frequency stabilization of a diodepumped Nd : YAG laser with a high-power-acceptance photodetector. 19(10) 728–730, (1994).

[157] Y. Aso and M. Kamiizumi, KAGRA LSC RFPD, (2012). JGWdoc, JGWD1201280-v2 (Internal).

[158] Keysight Technologies, Keysight E8663D PSG RF Analog Signal Generator data sheet. http://literature.cdn.keysight.com/litweb/pdf/5990- 4136EN.pdf, visited in 2019.

[159] Y. Enomoto and K. Shimode. KAGRA logbook 9550. Technical report, (2019). http://klog.icrr.u-tokyo.ac.jp/osl/?r=9550.

[160] Y. Enomoto, Polarization issue in the central IFO, (2019). JGWdoc, JGWG1910388-v1.

[161] M. Leonardi, MIR subsystem report, (2019). JGWdoc, JGW-G1910635-v1 (Internal).

[162] A. Staley, Locking the Advanced LIGO Gravitational Wave Detector : With a Focus on the Arm Length Stabilization Technique. Ph.D. thesis, Columbia University, (2015).

[163] Y. Enomoto. KAGRA logbook 7265. Technical report, (2018). http://klog.icrr.u-tokyo.ac.jp/osl/?r=7265.

[164] K. Yokogawa. Development of interferometer control system with green lasers in KAGRA. Master’s thesis, University of Toyama, (2019). Written in Japanese.

[165] R. Sugimoto. Development of Auxiliary Locking System in Gravitational Wave Telescope KAGRA. Master’s thesis, University of Toyama, (2020). Written in Japanese, in preparation.

[166] S. F. Clifford, G. M. B. Bouricius, G. R. Ochs, and M. H. Ackley, Phase Variations in Atmospheric Optical Propagation. Journal of the Optical Society of America, 61(10) 1279, (1971).

[167] L. C. Sinclair et al. , Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer. Physical Review A, 89(2) 023805, (2014).

[168] J.-M. Conan, G. Rousset, and P.-Y. Madec, Wave-front temporal spectra in high-resolution imaging through turbulence. Journal of the Optical Society of America A, 12(7) 1559, (1995).

[169] T. Akutsu and K. Kokeyama. KAGRA logbook 3352. Technical report, (2017). http://klog.icrr.u-tokyo.ac.jp/osl/?r=3352.

[170] S. Miyoki, Personal communication, (2019).

[171] J. Komma, Optische Eigenschaften von Substratmaterialien F¨ur Zuk¨unftige Kryogene Gravitationswellendetektoren. Ph.D. thesis, Jena, Jena, (2016).

[172] T. Udem, R. Holzwarth, and T. W. H¨ansch, Optical frequency metrology. Nature, 416 233–237, (2002).

[173] D. J. Jones, Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis. Science, 288(5466) 635– 639, (2000).

[174] R. Holzwarth et al. , Optical Frequency Synthesizer for Precision Spectroscopy. Physical Review Letters, 85(11) 2264–2267, (2000).

[175] Menlo Systems, FC1500-250-ULN. https://www.menlosystems.com/ assets/datasheets/Optical-Frequency-Combs/Menlo FC1500-250-ULN DEN 2019-08-02 3w.pdf, visited in 2019.

[176] T. Ushiba, Laser Frequency Stabilization with a Cryogenic Optical Cavity. Ph.D. thesis, Univ. of Tokyo, (2015).

[177] D. Yeaton-Massey and R. X. Adhikari, A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10ˆ-19 level. Optics Express, 20(19) 21019, (2012).

[178] J. A. Giaime, Studies of Laser Interferometer Design and a Vibration Isolation System for Interferometric Gravitational Wave Detectors. Ph.D. thesis, Massachusetts Institute of Technology, (1995).

[179] R. Flaminio and H. Heitmann, Longitudinal control of an interferometer for the detection of gravitational waves. Physics Letters A, 214(3-4) 112– 122, (1996).

[180] D. Sigg, N. Mavalvala, J. Giaime, P. Fritschel, and D. Shoemaker, Signal extraction in a power-recycled Michelson interferometer with Fabry–Perot arm cavities by use of a multiple-carrier frontal modulation scheme. Applied Optics, 37(24) 5687, (1998).

[181] J. S. Bendat and A. G. Piersol. Random Data: Analysis and Measurement Procedures. Wiley, (2010). The fourth edition.

[182] G. H. Fett. Feedback Control Systems. Prentice Hall, (1954).

[183] K. J. Blow, R. Loudon, and S. J. D. Phoenix, Continuum fields in quantum optics. Phys. Rev. A, 42(7) 4102–4114, (1990).

[184] H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Ph.D. thesis, the University of Western Australia, (2010).

[185] K. Doi, Phase Frequency Discriminator, (2018). JGWdoc, JGWD1809187-v3.

[186] Y. Aso and M. Kamiizumi, I&Q demodulator board, (2014). JGWdoc, JGW-D1402413-v1 (Internal).

[187] K. Awai, CM servo board, (2015). JGWdoc, JGW-D1503567-v4 (Internal).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る