リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a Line-by-Line and a Correlated k-Distribution Radiation Models for Planetary Atmospheres」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a Line-by-Line and a Correlated k-Distribution Radiation Models for Planetary Atmospheres

Takahashi, Yoshiyuki O. Hayashi, Yoshi-Yuki Hashimoto, George L. Kuramoto, Kiyoshi Ishiwatari, Masaki 神戸大学

2023

概要

A set of line-by-line and correlated k-distribution radiation models are developed aiming for applications in simulations and examinations of Venus and Mars-like planetary atmospheres. Our line-by-line model is validated by comparing the results with observations and those of previous studies under conditions of Venus, and present and possible early Mars. The radiation fields calculated by our line-by-line model agree well with observed profiles and are within the acceptable range from those presented in previous studies. The results obtained by our line-by-line model are then processed to generate a series of parameters for our correlated k-distribution model. It is confirmed that the radiation fields calculated with those sets of parameters by our correlated k-distribution model sufficiently agree with those by our line-by-line model for the atmospheres with a wide range of surface pressure. By the use of our correlated k-distribution model implemented with those sets of parameters, we evaluate the radiation field for Venus and calculate radiative-convective equilibrium profiles for Venus and Mars. The obtained vertical thermal structures for Venus are qualitatively consistent with observations, and the behaviors of surface pressure and surface temperature for Mars are similar to those reported by previous studies. Those results demonstrate that our models including the procedure for generating tables of radiation parameters are applicable to examine climates of CO₂ dominant atmospheres in our solar and exoplanetary systems.

この論文で使われている画像

参考文献

Allen, D. A., and J. W. Crawford, 1984: Cloud structure on

the dark side of Venus. Nature, 307, 222–224.

Ando, H., T. Imamura, S. Tellmann, M. Pätzold, B. Häusler,

N. Sugimoto, M. Takagi, H. Sagawa, S. Limaye, Y.

Matsuda, R. K. Choudhary, and M. Antonita, 2020:

Thermal structure of the Venusian atmosphere from

the sub-cloud region to the mesosphere as observed

by radio occultation. Sci. Rep., 10, 3448, doi:10.1038/

s41598-020-59278-8.

Baranov, Y. I., W. J. Lafferty, and G. T. Fraser, 2004: Infrared spectrum of the continuum and dimer absorption

in the vicinity of the O2 vibrational fundamental in

O2/CO2 mixtures. J. Mol. Spectrosc., 228, 432–440.

Bézard, B., C. de Bergh, D. Crisp, and J.-P. Maillard, 1990:

The deep atmosphere of Venus revealed by highresolution nightside spectra. Nature, 345, 508–511.

Bézard, B., A. Fedorova, J.-L. Bertaux, A. Rodin, and O.

Korablev, 2011: The 1.10- and 1.18-μm nightside

windows of Venus observed by SPICAV-IR aboard

Venus Express. Icarus, 216, 173–183.

Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and

P. D. Brown, 2005: Atmospheric radiative transfer

modeling: A summary of the AER codes. J. Quant.

Spectrosc. Radiat. Transfer, 91, 233–244.

Crisp, D., 1986: Radiative forcing of the Venus mesosphere:

I. Solar fluxes and heating rates. Icarus, 67, 484–514.

Crisp, D., 1989: Radiative forcing of the Venus mesosphere:

II. Thermal fluxes, cooling rates, and radiative equilibrium temperatures. Icarus, 77, 391–413.

Eymet, V., R. Fournier, J.-L. Dufresne, S. Lebonnois, F.

Hourdin, and M. A. Bullock, 2009: Net exchange

parameterization of thermal infrared radiative transfer

in Venus’ atmosphere. J. Geophys. Res., 114, E11008,

doi:10.1029/2008JE003276.

Eymet, V., C. Coustet, and B. Piaud, 2016: kspectrum: An

open-source code for high-resolution molecular absorption spectra production. J. Phys.: Conf. Ser., 676,

012005, doi:10.1088/1742-6596/676/1/012005.

Fedorova, A., O. Korablev, A.-C. Vandaele, J.-L. Bertaux,

D. Belyaev, A. Mahieux, E. Neefs, W. V. Wilquet,

R. Drummond, F. Montmessin, and E. Villard, 2008:

HDO and H2O vertical distributions and isotopic ratio

in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res., 113, E00B22, doi:10.1029/2008JE003146.

Freeman, D. E., K. Yoshino, J. R. Esmond, and W. H.

Parkinson, 1984: High resolution absorption cross

section measurements of SO2 at 213 k in the wavelength region 172–240 nm. Planet. Space Sci., 32,

1125–1134.

Golovin, I. M., B. E. Moshkin, and A. P. Ekonomov, 1983:

Vol. 101, No. 1

Some optical properties of the Venus surface. Venus.

Hunten, D. M., L. Colin, T. M. Donahue, and V.

I. Moroz (eds.), The University of Arizona Press,

Tucson, Arizona, 131–136.

Gruszka, M., and A. Borysow, 1997: Roto-translational

collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm−1, at

temperatures from 200 to 800 K. Icarus, 129, 172–

177.

Gueymard, C. A., 2004: The sun’s total and spectral irradiance for solar energy applications and solar radiation

models. Sol. Energy, 76, 423–453.

Haberle, R. M., M. A. Kahre, J. L. Hollingsworth, F.

Montmessin, R. J. Wilson, R. A. Urata, A. S. Brecht,

M. J. Wolff, A. M. Kling, and J. R. Schaeffer, 2019:

Documentation of the NASA/Ames Mars Global Climate Mode: Simulations of the present seasonal water

cycle. Icarus, 333, 130–164.

Hansen, J. E., and L. D. Travis, 1974: Light scattering in

planetary atmospheres. Space Sci. Rev., 16, 527–610.

Haqq-Misra, J. D., S. D. Domagal-Goldman, P. J. Kasting,

and J. F. Kasting, 2008: A revised hazy methane

greenhouse for the Archean Earth. Astrobiology, 8,

1127–1137.

Haus, R., D. Kappel, and G. Arnold, 2013: Self-consistent

retrieval of temperature profiles and cloud structure in

the northern hemisphere of Venus using VIRTIS/VEX

and PMV/VENERA-15 radiation measurements.

Planet. Space Sci., 89, 77–101.

Haus, R., D. Kappel, and G. Arnold, 2015: Radiative heating

and cooling in the middle and lower atmosphere of

Venus and responses to atmospheric and spectroscopic

parameter variations. Planet. Space Sci., 117, 262–294.

Hermans, C., A. C. Vandaele, and S. Fally, 2009: Fourier

transform measurements of SO2 absorption cross

sections: I. Temperature dependence in the 24 000–

29 000 cm−1 (345–420 nm) region. J. Quant. Spectrosc. Radiat. Transfer, 110, 756–765.

Hourdin, F., 1992: A new representation of the absorption by

the CO2 15-μm band for a Martian general circulation

model. J. Geophys. Res., 97, 18319–18335.

Ikeda, K., 2010: Development of radiative transfer model

for Venus atmosphere and simulation of superrotation

using a general circulation model. PhD thesis, The

University of Tokyo.

Irwin, P. G. J., N. A. Teanby, R. de Kok, L. N. Fletcher, C. J.

A. Howett, C. C. C. Tsang, C. F. Wilson, S. B. Calcutt,

C. A. Nixon, and P. D. Parrish, 2008: The NEMESIS

planetary atmosphere radiative transfer and retrieval

tool. J. Quant. Spectrosc. Radiat. Transfer, 109, 1136–

1150.

Ito, Y., G. L. Hashimoto, Y. O. Takahashi, M. Ishiwatari, and

K. Kuramoto, 2020: H2O2-induced greenhouse warming on oxidized early Mars. Astrophys. J., 893, 168,

doi:10.3847/1538-4357/ab7db4.

Kasting, J. F., 1991: CO2 condensation and the climate of

February 2023

Y. O. TAKAHASHI et al.

early Mars. Icarus, 94, 1–13.

Kylling, A., K. Stamnes, and S.-C. Tsay, 1995: A reliable

and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic

layered media. J. Atmos. Chem., 21, 115–150.

Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Four­

nier, and F. Forget, 2010: Superrotation of Venus’

atmosphere analyzed with a full general circulation

model. J. Geophys. Res., 115, E06006, doi:10.1029/

2009JE003458.

Lebonnois, S., V. Eymet, C. Lee, and J. V. d’Ollone, 2015:

Analysis of the radiative budget of the Venusian

atmosphere based on infrared Net Exchange Rate

formalism. J. Geophys. Res., 120, 1186–1200.

Lebonnois, S., G. Schubert, F. Forget, and A. Spiga, 2018:

Planetary boundary layer and slope winds on Venus.

Icarus, 314, 149–158.

Lee, C., and M. I. Richardson, 2011: A discrete ordinate,

multiple scattering, radiative transfer model of the

Venus atmosphere from 0.1 to 260 µm. J. Atmos. Sci.,

68, 1323–1339.

Lee, Y. J., H. Sagawa, R. Haus, S. Stefani, T. Imamura, D. V.

Titov, and G. Piccioni, 2016: Sensitivity of net thermal flux to the abundance of trace gases in the lower

atmosphere of Venus. J. Geophys. Res., 121, 1737–

1752.

Marcq, E., T. Encrenaz, B. Bézard, and M. Birlan, 2006:

Remote sensing of Venus’ lower atmosphere from

ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species. Planet. Space Sci.,

54, 1360–1370.

Marov, M. Y., V. S. Avduevsky, N. F. Borodin, A. P. Ekonomov, V. V. Kerzhanovich, V. P. Lysov, B. Y. Moshkin,

M. K. Rozhdestvensky, and O. L. Ryabov, 1973:

Preliminary results on the Venus atmosphere from the

Venera 8 descent module. Philos. Trans. Roy. Soc.

London, Ser. A, 20, 407–421.

Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and

a new improvement. J. Atmos. Sci., 37, 630–643.

Mendonça, J. M., P. L. Read, C. F. Wilson, and C. Lee,

2015: A new, fast and flexible radiative transfer

method for Venus general circulation models. Planet.

Space Sci., 105, 80–93.

Mischna, M. A., C. Lee, and M. Richardson, 2012: Development of a fast, accurate radiative transfer model for

the Martian atmosphere, past and present. J. Geophys.

Res., 117, E10009, doi:10.1029/2012JE004110.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and

S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k

model for the longwave. J. Geophys. Res., 102,

16663–16682.

Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M.

J. Alvarado, and D. C. Tobin, 2012: Development and

65

recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. Roy. Soc. London, Ser.

A, 370, 2520–2556.

Moroz, V. I., A. P. Ekonomov, B. E. Moshkin, H. E. Revercomb, L. A. Sromovsky, J. T. Schofield, D. Spänkuch,

F. W. Taylor, and M. G. Tomasko, 1985: Solar and

thermal radiation in the Venus atmosphere. Adv. Space

Res., 5, 197–232.

Pavlov, A. A., J. F. Kasting, L. L. Brown, K. A. Rages, and

R. Freedman, 2000: Greenhouse warming by CH4 in

the atmosphere of early Earth. J. Geophys. Res., 105,

11981–11990.

Perrin, M. Y., and J. M. Hartmann, 1989: Temperaturedependent measurements and modeling of absorption

by CO2-N2 mixtures in the far line-wings of the 4.3

μm CO2 band. J. Quant. Spectrosc. Radiat. Transfer,

42, 311–317.

Pierrehumbert, R. T., 2010: Principles of Planetary Climate.

Cambridge University Press, 674 pp.

Pollack, J. B., J. B. Dalton, D. Grinspoon, R. B. Wattson,

R. Freedman, D. Crisp, D. A. Allen, B. Bezard, C.

DeBergh, L. P. Giver, Q. Ma, and R. Tipping, 1993:

Near-infrared light from Venus nightside: A spectroscopic analysis. Icarus, 103, 1–42.

Ramirez, R. M., R. Kopparapu, M. E. Zugger, T. D. Robinson, R. Freedman, and J. F. Kasting, 2014: Warming

early Mars with CO2 and H2. Nat. Geosci., 7, 59–63.

Read, P. L., J. Barstow, B. Charnay, S. Chelvaniththilan, P.

G. J. Irwin, S. Knight, S. Lebonnois, S. R. Lewis, J.

Mendonça, and L. Montaboneb, 2016: Global energy

budgets and ‘Trenberth diagrams’ for the climates of

terrestrial and gas giant planets. Quart. J. Roy. Meteor.

Soc., 142, 703–720.

Revercomb, H. E., L. A. Sromovsky, V. E. Suomi, and R. W.

Boese, 1985: Net thermal radiation in the atmosphere

of Venus. Icarus, 61, 521–538.

Richard, C., I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans,

W. J. Lafferty, G. S. Orton, K. M. Smith, and H. Tran,

2012: New section of the HITRAN database: Collisioninduced absorption (CIA). J. Quant. Spectrosc. Radiat.

Transfer, 113, 1276–1285.

Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe, R. R.

Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun,

and J. Tennyson, 2010: HITEMP, the high-temperature

molecular spectroscopic database. J. Quant. Spectrosc.

Radiat. Transfer, 111, 2139–2150.

Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D.

ChrisBenner, P. F. Bernath, M. Birk, L. Bizzocchi, V.

Boudon, L. R. Brown, A. Campargue, K. Chance, E.

A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin,

A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison,

J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart,

A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A.

Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S.

Mikhailenko, H. S. P. Müller, O. V. Naumenko, A.

66

Journal of the Meteorological Society of Japan

V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R.

Polovtseva, C. Richard, M. A. H. Smith, E. Starikova,

K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G.

Tyuterev, and G. Wagner, 2013: The HITRAN2012

molecular spectroscopic database. J. Quant. Spectrosc.

Radiat. Transfer, 130, 4–50.

Schofield, J. T., and F. W. Taylor, 1982: Net global thermal

emission from the Venusian atmosphere. Icarus, 52,

245–262.

Schubert, G., 1983: General circulation and the dynamical

state of the Venus atmosphere. Venus. Hunten, D. M.,

L. Colin, T. M. Donahue, and V. I. Moroz (eds.), The

University of Arizona Press, Tucson, Arizona, 681–

765.

Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T.

Findlay, G. M. Kelly, and S. C. Sommer, 1980: Measurements of thermal structure and thermal contrasts

in the atmosphere of Venus and related dynamical

observations: Results from the four Pioneer Venus

probes. J. Geophys. Res., 85, 7903–7933.

Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor, S. S.

Limaye, H. E. Revercomb, L. A. Sromovsky, V. V.

Kerzhanovich, V. I. Moroz, and M. Y. Marov, 1985:

Models of the structure of the atmosphere of Venus

from the surface to 100 kilometers altitude. Adv.

Space Res., 5, 3–58.

Stefani, S., G. Piccioni, M. Snels, D. Grassi, and A. Adriani,

2013: Experimental CO2 absorption coefficients at

high pressure and high temperature. J. Quant. Spectrosc. Radiat. Transfer, 117, 21–28.

Taylor, F. W., D. M. Hunten, and L. V. Ksanfomaliti, 1983:

The thermal balance of the middle and upper atmosphere of Venus. Venus. Hunten, D. M., L. Colin, T. M.

Donahue, and V. I. Moroz (eds.), The University of

Arizona Press, Tucson, Arizona, 650–680.

Vol. 101, No. 1

Titov, D. V., M. A. Bullock, D. Crisp, N. O. Renno, F. W.

Taylor, and L. V. Zasova, 2007: Radiation in the atmosphere of Venus. Exploring Venus as a Terrestrial

Planet. Esposito, L. W., E. R. Stofan, and T. E. Cravens

(eds.), Geophys. Monogr., Vol. 176, 121–138.

Tomasko, M. G., L. R. Doose, P. H. Smith, and A. P. Odell,

1980a: Measurements of the flux of sunlight in the atmosphere of Venus. J. Geophys. Res., 85, 8167–8186.

Tomasko, M. G., P. H. Smith, V. E. Suomi, L. R. Sromovsky,

H. E. Revercomb, F. W. Taylor, D. J. Martonchik,

A. Seiff, R. Boese, J. B. Pollack, A. P. Ingersoll, G.

Schubert, and C. C. Covey, 1980b: The thermal balance of Venus in light of the Pioneer Venus mission. J.

Geophys. Res., 85, 8187–8199.

Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating

rates and photodissociation rates in inhomogeneous

multiple scattering atmospheres. J. Geophys. Res., 94,

16287–16301.

Turbet, M., E. Bolmont, J. Leconte, F. Forget, F. Selsis, G.

Tobie, A. Caldas, J. Naar, and M. Gillon, 2018: Modeling climate diversity, tidal dynamics and the fate of

volatiles on TRAPPIST-1 planets. Astron. Astrophys.,

612, A86, doi:10.1051/0004-6361/201731620.

Wordsworth, R., F. Forget, and V. Eymet, 2010: Infrared

collision-induced and far-line absorption in dense CO2

atmospheres. Icarus, 210, 992–997.

Yurchenko, S. N., A. F. Al-Refaie, and J. Tennyson, 2018:

EXOCROSS: A general program for generating spectra from molecular line lists. Astron. Astrophys., 614,

A131, doi:10.1051/0004-6361/201732531.

Zasova, L. V., N. Ignatieva, I. Khatuntseva, and V. Linkin,

2007: Structure of the Venus atmosphere. Planet.

Space Sci., 55, 1712–1728.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る