リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inter-organ Wingless/Ror/Akt signaling regulates nutrient-dependent hyperarborization of somatosensory neurons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inter-organ Wingless/Ror/Akt signaling regulates nutrient-dependent hyperarborization of somatosensory neurons

Kanaoka, Yasutetsu Onodera, Koun Watanabe, Kaori Hayashi, Yusaku Usui, Tadao Uemura, Tadashi Hattori, Yukako 京都大学 DOI:10.7554/eLife.79461

2023

概要

Nutrition in early life has profound effects on an organism, altering processes such as organogenesis. However, little is known about how specific nutrients affect neuronal development. Dendrites of class IV dendritic arborization neurons in Drosophila larvae become more complex when the larvae are reared on a low-yeast diet compared to a high-yeast diet. Our systematic search for key nutrients revealed that the neurons increase their dendritic terminal densities in response to a combined deficiency in vitamins, metal ions, and cholesterol. The deficiency of these nutrients upregulates Wingless in a closely located tissue, body wall muscle. Muscle-derived Wingless activates Akt in the neurons through the receptor tyrosine kinase Ror, which promotes the dendrite branching. In larval muscles, the expression of wingless is regulated not only in this key nutrient-dependent manner, but also by the JAK/STAT signaling pathway. Additionally, the low-yeast diet blunts neuronal light responsiveness and light avoidance behavior, which may help larvae optimize their survival strategies under low-nutritional conditions. Together, our studies illustrate how the availability of specific nutrients affects neuronal development through inter-organ signaling.

この論文で使われている画像

参考文献

Anders S, Pyl PT, Huber W. 2015. HTSeq--a python framework to work with high-throughput sequencing data.

Bioinformatics 31:166–169. DOI: https://doi.org/10.1093/bioinformatics/btu638, PMID: 25260700

Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H, Perrimon N, Baeg GH. 2007. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expression Patterns 7:323–331. DOI: https://doi. org/10.1016/j.modgep.2006.08.003

Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MDW. 2007. Optimization of dietary restriction protocols in Drosophila. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 62:1071–1081. DOI: https://doi.org/10.1093/gerona/62.10.1071, PMID: 17921418

Bhutta ZA, Berkley JA, Bandsma RHJ, Kerac M, Trehan I, Briend A. 2017. Severe childhood malnutrition. Nature Reviews. Disease Primers 3:17067. DOI: https://doi.org/10.1038/nrdp.2017.67, PMID: 28933421

Bosch JA, Colbeth R, Zirin J, Perrimon N. 2020. Gene knock-ins in Drosophila using homology-independent insertion of universal donor plasmids. Genetics 214:75–89. DOI: https://doi.org/10.1534/genetics.119.302819, PMID: 31685521

Bräcker LB, Siju KP, Varela N, Aso Y, Zhang M, Hein I, Vasconcelos ML, Grunwald Kadow IC. 2013. Essential role of the mushroom body in context-dependent CO₂ avoidance in Drosophila. Current Biology 23:1228–1234. DOI: https://doi.org/10.1016/j.cub.2013.05.029, PMID: 23770186

Bretscher H, O’Connor MB. 2020. The role of muscle in insect energy homeostasis. Frontiers in Physiology 11:580687. DOI: https://doi.org/10.3389/fphys.2020.580687, PMID: 33192587

Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. 2018. Receptor tyrosine kinases (rtks) in breast cancer: signaling, therapeutic implications and challenges. Molecular Cancer 17:34. DOI: https://doi.org/10. 1186/s12943-018-0797-x, PMID: 29455658

Chantranupong L, Wolfson RL, Sabatini DM. 2015. Nutrient-Sensing mechanisms across evolution. Cell 161:67– 83. DOI: https://doi.org/10.1016/j.cell.2015.02.041, PMID: 25815986

Chen CM, Struhl G. 1999. Wingless transduction by the frizzled and FRIZZLED2 proteins of Drosophila. Development 126:5441–5452. DOI: https://doi.org/10.1242/dev.126.23.5441

Chin MR, Tracey WD. 2017. Nociceptive circuits: Ca ’'t escape detection. Current Biology 27:R796–R798. DOI: https://doi.org/10.1016/j.cub.2017.07.031

Colombani J, Andersen DS, Léopold P. 2012. Secreted peptide dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–585. DOI: https://doi.org/10.1126/science.1216689, PMID: 22556251

Dong X, Shen K, Bülow HE. 2015. Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annual Review of Physiology 77:271–300. DOI: https://doi.org/10.1146/annurev-physiol-021014-071746, PMID: 25386991

Droujinine IA, Perrimon N. 2016. Interorgan communication pathways in physiology: focus on Drosophila. Annual Review of Genetics 50:539–570. DOI: https://doi.org/10.1146/annurev-genet-121415-122024, PMID: 27732790

Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA. 2006. Jak/stat signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133:4721–4729. DOI: https://doi.org/10.1242/dev.02675, PMID: 17079268

Endo M, Minami Y. 2018. Diverse roles for the ror-family receptor tyrosine kinases in neurons and glial cells during development and repair of the nervous system. Developmental Dynamics 247:24–32. DOI: https://doi. org/10.1002/dvdy.24515, PMID: 28470690

Filosa A, Barker AJ, Dal Maschio M, Baier H. 2016. Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90:596–608. DOI: https://doi.org/10.1016/j.neuron.2016.03.014, PMID: 27146269

Frenquelli M, Caridi N, Antonini E, Storti F, Viganò V, Gaviraghi M, Occhionorelli M, Bianchessi S, Bongiovanni L, Spinelli A, Marcatti M, Belloni D, Ferrero E, Karki S, Brambilla P, Martinelli-Boneschi F, Colla S, Ponzoni M, DePinho RA, Tonon G. 2020. The Wnt receptor Ror2 drives the interaction of multiple myeloma cells with the microenvironment through Akt activation. Leukemia 34:257–270. DOI: https://doi.org/10.1038/s41375-019- 0486-9, PMID: 31148590

Georgieff MK, Brunette KE, Tran PV. 2015. Early life nutrition and neural plasticity. Development and Psychopathology 27:411–423. DOI: https://doi.org/10.1017/S0954579415000061, PMID: 25997762

González A, Hall MN, Lin SC, Hardie DG. 2020. Ampk and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metabolism 31:472–492. DOI: https://doi.org/10.1016/j.cmet.2020.01.015, PMID: 32130880

Green J, Nusse R, van Amerongen R. 2014. The role of Ryk and ROR receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harbor Perspectives in Biology 6:a009175. DOI: https://doi.org/10.1101/ cshperspect.a009175, PMID: 24370848

Grueber WB, Jan LY, Jan YN. 2002. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129:2867–2878. DOI: https://doi.org/10.1242/dev.129.12.2867, PMID: 12050135

Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, Jan YN. 2007. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134:55–64. DOI: https://doi.org/10.1242/dev.02666, PMID: 17164414

Guntur AR, Gu P, Takle K, Chen J, Xiang Y, Yang CH. 2015. Drosophila TRPA1 isoforms detect UV light via photochemical production of H 2 O 2. PNAS 112:E5753–E5761. DOI: https://doi.org/10.1073/pnas.1514862112

Han C, Jan LY, Jan YN. 2011. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. PNAS 108:9673–9678. DOI: https://doi.org/10.1073/pnas. 1106386108

Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, Jan YN. 2012. Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73:64–78. DOI: https://doi.org/10.1016/j.neuron.2011.10.036, PMID: 22243747

Harris RE, Setiawan L, Saul J, Hariharan IK. 2016. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 5:e11588. DOI: https://doi.org/10. 7554/eLife.11588, PMID: 26840050

Hattori Y, Usui T, Satoh D, Moriyama S, Shimono K, Itoh T, Shirahige K, Uemura T. 2013. Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of abrupt and knot/collier. Developmental Cell 27:530–544. DOI: https://doi.org/10.1016/j.devcel.2013.10.024, PMID: 24290980

He CW, Liao CP, Pan CL. 2018. Wnt signalling in the development of axon, dendrites and synapses. Open Biology 8:180116. DOI: https://doi.org/10.1098/rsob.180116, PMID: 30282660

Homem CCF, Repic M, Knoblich JA. 2015. Proliferation control in neural stem and progenitor cells. Nature Reviews. Neuroscience 16:647–659. DOI: https://doi.org/10.1038/nrn4021, PMID: 26420377

Hoyer N, Zielke P, Hu C, Petersen M, Sauter K, Scharrenberg R, Peng Y, Kim CC, Han C, Parrish JZ, Soba P. 2018. Ret and substrate-derived TGF-β maverick regulate space-filling dendrite growth in Drosophila sensory neurons. Cell Reports 24:2261–2272.. DOI: https://doi.org/10.1016/j.celrep.2018.07.092, PMID: 30157422

Hughes CL, Thomas JB. 2007. A sensory feedback circuit coordinates muscle activity in Drosophila. Molecular and Cellular Neurosciences 35:383–396. DOI: https://doi.org/10.1016/j.mcn.2007.04.001, PMID: 17498969

Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD. 2007. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Current Biology 17:2105–2116. DOI: https://doi.org/10.1016/j.cub. 2007.11.029, PMID: 18060782

Im SH, Galko MJ. 2012. Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Developmental Dynamics 241:16–26. DOI: https://doi.org/10.1002/dvdy.22737, PMID: 21932321

Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang C-H, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. 2022. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Current Biology 32:149–163. DOI: https://doi.org/10.1016/j.cub.2021.10.069, PMID: 34798050

Jan YN, Jan LY. 2010. Branching out: mechanisms of dendritic arborization. Nature Reviews. Neuroscience 11:316–328. DOI: https://doi.org/10.1038/nrn2836, PMID: 20404840

Jaszczak JS, DeVault L, Jan LY, Jan YN. 2022. Steroid hormone signaling activates thermal nociception during Drosophila peripheral nervous system development. eLife 11:e76464. DOI: https://doi.org/10.7554/eLife. 76464, PMID: 35353036

Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G. 2016. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca (2+) signalling in glutamatergic interneurons. eLife 5:e17495. DOI: https://doi. org/10.7554/eLife.17495, PMID: 27494275

Jayakumar S, Hasan G. 2018. Neuronal calcium signaling in metabolic regulation and adaptation to nutrient stress. Frontiers in Neural Circuits 12:25. DOI: https://doi.org/10.3389/fncir.2018.00025, PMID: 29674958

Jayakumar S, Richhariya S, Deb BK, Hasan G. 2018. A multicomponent neuronal response encodes the larval decision to pupariate upon amino acid starvation. The Journal of Neuroscience 38:10202–10219. DOI: https:// doi.org/10.1523/JNEUROSCI.1163-18.2018, PMID: 30301757

Jiang N, Soba P, Parker E, Kim CC, Parrish JZ. 2014. The microrna bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth. Development 141:2657–2668. DOI: https://doi.org/10. 1242/dev.107573, PMID: 24924190

Jiang N, Rasmussen JP, Clanton JA, Rosenberg MF, Luedke KP, Cronan MR, Parker ED, Kim HJ, Vaughan JC, Sagasti A, Parrish JZ. 2019. A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites. eLife 8:e42455. DOI: https://doi.org/10.7554/eLife.42455, PMID: 30855229

Kambe T, Nishito Y, Fukue K. 2016. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. Elsevier. DOI: https://doi.org/10.1016/C2014-0-02224-1

Kanaoka Y, Skibbe H, Hayashi Y, Uemura T, Hattori Y. 2019. DeTerm: software for automatic detection of neuronal dendritic branch terminals via an artificial neural network. Genes to Cells 24:464–472. DOI: https:// doi.org/10.1111/gtc.12700, PMID: 31095815

Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB. 2012. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in Drosophila sensory neurons. Neuron 73:79–91. DOI: https://doi.org/10.1016/j.neuron.2011.10.033, PMID: 22243748

Lee JH, Bassel-Duby R, Olson EN. 2014. Heart- and muscle-derived signaling system dependent on MED13 and wingless controls obesity in Drosophila. PNAS 111:9491–9496. DOI: https://doi.org/10.1073/pnas.1409427111, PMID: 24979807

Lin W-Y, Williams C, Yan C, Koledachkina T, Luedke K, Dalton J, Bloomsburg S, Morrison N, Duncan KE, Kim CC, Parrish JZ. 2015. The SLC36 transporter pathetic is required for extreme dendrite growth in Drosophila sensory neurons. Genes & Development 29:1120–1135. DOI: https://doi.org/10.1101/gad.259119.115, PMID: 26063572

Liu Y, Yang H, Chen T, Luo Y, Xu Z, Li Y, Yang J. 2015. Silencing of receptor tyrosine kinase Ror1 inhibits tumorcell proliferation via PI3K/Akt/mTOR signaling pathway in lung adenocarcinoma. PLOS ONE 10:e0127092. DOI: https://doi.org/10.1371/journal.pone.0127092, PMID: 25978653

Liu Q, Tabuchi M, Liu S, Kodama L, Horiuchi W, Daniels J, Chiu L, Baldoni D, Wu MN. 2017. Branch-Specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science 356:534–539. DOI: https://doi. org/10.1126/science.aal3245, PMID: 28473588

Liu GY, Sabatini DM. 2020. Mtor at the nexus of nutrition, growth, ageing and disease. Nature Reviews.

Molecular Cell Biology 21:183–203. DOI: https://doi.org/10.1038/s41580-019-0199-y, PMID: 31937935

Matsubara D, Horiuchi SY, Shimono K, Usui T, Uemura T. 2011. The seven-pass transmembrane cadherin flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, espinas, in Drosophila sensory neurons. Genes & Development 25:1982–1996. DOI: https://doi.org/10.1101/gad.16531611, PMID: 21937715

McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Research 40:4288–4297. DOI: https://doi.org/10.1093/nar/ gks042, PMID: 22287627

Meltzer S, Yadav S, Lee J, Soba P, Younger SH, Jin P, Zhang W, Parrish J, Jan LY, Jan YN. 2016. EpidermisDerived semaphorin promotes dendrite self-avoidance by regulating dendrite-substrate adhesion in Drosophila sensory neurons. Neuron 89:741–755. DOI: https://doi.org/10.1016/j.neuron.2016.01.020, PMID: 26853303

Meltzer S, Bagley JA, Perez GL, O’Brien CE, DeVault L, Guo Y, Jan LY, Jan Y-N. 2017. Phospholipid homeostasis regulates dendrite morphogenesis in Drosophila sensory neurons. Cell Reports 21:859–866. DOI: https://doi. org/10.1016/j.celrep.2017.09.089, PMID: 29069593

Morton GJ, Meek TH, Schwartz MW. 2014. Neurobiology of food intake in health and disease. Nature Reviews.

Neuroscience 15:367–378. DOI: https://doi.org/10.1038/nrn3745, PMID: 24840801

Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ. 2011. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models & Mechanisms 4:842–849. DOI: https://doi.org/10.1242/dmm.007948, PMID: 21719444

Nye DMR, Albertson RM, Weiner AT, Hertzler JI, Shorey M, Goberdhan DCI, Wilson C, Janes KA, Rolls MM. 2020. The receptor tyrosine kinase ROR is required for dendrite regeneration in Drosophila neurons. PLOS Biology 18:e3000657. DOI: https://doi.org/10.1371/journal.pbio.3000657, PMID: 32163406

Okamoto N, Nishimura T. 2015. Signaling from glia and cholinergic neurons controls nutrient-dependent production of an insulin-like peptide for Drosophila body growth. Developmental Cell 35:295–310. DOI: https://doi.org/10.1016/j.devcel.2015.10.003, PMID: 26555050

Onodera K, Baba S, Murakami A, Uemura T, Usui T. 2017. Small conductance ca2+-activated K+ channels induce the firing pause periods during the activation of Drosophila nociceptive neurons. eLife 6:e1. DOI: https://doi. org/10.7554/eLife.29754.001

Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, Quintana A, Zweifel LS, Rønnekleiv OK, Kelly MJ,

Palmiter RD. 2016. Agouti-Related peptide neural circuits mediate adaptive behaviors in the starved state. Nature Neuroscience 19:734–741. DOI: https://doi.org/10.1038/nn.4274, PMID: 27019015

Parrish JZ, Xu P, Kim CC, Jan LY, Jan YN. 2009. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in Drosophila sensory neurons. Neuron 63:788–802. DOI: https://doi.org/10. 1016/j.neuron.2009.08.006, PMID: 19778508

Piper MDW, Blanc E, Leitão-Gonçalves R, Yang M, He X, Linford NJ, Hoddinott MP, Hopfen C, Soultoukis GA, Niemeyer C, Kerr F, Pletcher SD, Ribeiro C, Partridge L. 2014. A holidic medium for Drosophila melanogaster. Nature Methods 11:100–105. DOI: https://doi.org/10.1038/nmeth.2731, PMID: 24240321

Piper MDW, Soultoukis GA, Blanc E, Mesaros A, Herbert SL, Juricic P, He X, Atanassov I, Salmonowicz H, Yang M, Simpson SJ, Ribeiro C, Partridge L. 2017. Matching dietary amino acid balance to the in silicotranslated exome optimizes growth and reproduction without cost to lifespan. Cell Metabolism 25:610–621. DOI: https://doi.org/10.1016/j.cmet.2017.02.005, PMID: 28273481

Poe AR, Tang L, Wang B, Li Y, Sapar ML, Han C. 2017. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila. PNAS 114:E8062–E8071. DOI: https://doi.org/10.1073/pnas. 1707467114, PMID: 28874572

Poe AR, Xu Y, Zhang C, Lei J, Li K, Labib D, Han C. 2020. Low foxo expression in Drosophila somatosensory neurons protects dendrite growth under nutrient restriction. eLife 9:47. DOI: https://doi.org/10.7554/eLife. 53351, PMID: 32427101

Prado EL, Dewey KG. 2014. Nutrition and brain development in early life. Nutrition Reviews 72:267–284. DOI: https://doi.org/10.1111/nure.12102, PMID: 24684384

Rajan A, Perrimon N. 2012. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–137. DOI: https://doi.org/10.1016/j.cell.2012.08.019, PMID: 23021220

Ripp C, Loth J, Petrova I, Linnemannstöns K, Ulepic M, Fradkin L, Noordermeer J, Wodarz A. 2018. Drosophila ROR is a nervous system-specific co-receptor for Wnt ligands. Biology Open 7:bio033001. DOI: https://doi.org/ 10.1242/bio.033001, PMID: 30341100

Robinson MD, McCarthy DJ, Smyth GK. 2010. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. DOI: https://doi.org/10.1093/bioinformatics/btp616, PMID: 19910308

Schuster CM, Davis GW. 1996. Genetic dissection of structural and functional components of synaptic plasticity. I. fasciclin II controls synaptic stabilization and growth. Neuron 1:641–654. DOI: https://doi.org/10.1016/S0896-6273(00)80197-X, PMID: 8893022

Shim J, Gururaja-Rao S, Banerjee U. 2013. Nutritional regulation of stem and progenitor cells in Drosophila. Development 140:4647–4656. DOI: https://doi.org/10.1242/dev.079087, PMID: 24255094

Shimada-Niwa Y, Niwa R. 2014. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nature Communications 5:5778. DOI: https://doi.org/10.1038/ncomms6778, PMID: 25502946

Shimono K, Fujishima K, Nomura T, Ohashi M, Usui T, Kengaku M, Toyoda A, Uemura T. 2014. An evolutionarily conserved protein chord regulates scaling of dendritic arbors with body size. Scientific Reports 4:4415. DOI: https://doi.org/10.1038/srep04415, PMID: 24643112

Sopko R, Perrimon N. 2013. Receptor tyrosine kinases in Drosophila development. Cold Spring Harbor Perspectives in Biology 5:a009050. DOI: https://doi.org/10.1101/cshperspect.a009050, PMID: 23732470

Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E. 2002. Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in akt/PKB. Science 295:2088– 2091. DOI: https://doi.org/10.1126/science.1068094

St Pierre SE, Galindo MI, Couso JP, Thor S. 2002. Control of Drosophila imaginal disc development by rotund and roughened eye: differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development 129:1273–1281. DOI: https://doi.org/10.1242/dev.129.5.1273, PMID: 11874922

Symmonds M, Emmanuel JJ, Drew ME, Batterham RL, Dolan RJ. 2010. Metabolic state alters economic decision making under risk in humans. PLOS ONE 5:e11090. DOI: https://doi.org/10.1371/journal.pone.0011090, PMID: 20585383

Tenenbaum CM, Misra M, Alizzi RA, Gavis ER. 2017. Enclosure of dendrites by epidermal cells restricts branching and permits coordinated development of spatially overlapping sensory neurons. Cell Reports 20:3043–3056. DOI: https://doi.org/10.1016/j.celrep.2017.09.001, PMID: 28954223

Terada SI, Matsubara D, Onodera K, Matsuzaki M, Uemura T, Usui T. 2016. Neuronal processing of noxious thermal stimuli mediated by dendritic ca(2+) influx in Drosophila somatosensory neurons. eLife 5:e12959. DOI: https://doi.org/10.7554/eLife.12959, PMID: 26880554

Texada MJ, Koyama T, Rewitz K. 2020. Regulation of body size and growth control. Genetics 216:269–313. DOI: https://doi.org/10.1534/genetics.120.303095, PMID: 33023929

Tracey WD, Wilson RI, Laurent G, Benzer S. 2003. Painless, a Drosophila gene essential for nociception. Cell 113:261–273. DOI: https://doi.org/10.1016/s0092-8674(03)00272-1, PMID: 12705873

Tsubouchi A, Caldwell JC, Tracey WD. 2012. Dendritic filopodia, ripped pocket, NOMPC, and nmdars contribute to the sense of touch in Drosophila larvae. Current Biology 22:2124–2134. DOI: https://doi.org/10.1016/j.cub. 2012.09.019, PMID: 23103192

Valnegri P, Puram SV, Bonni A. 2015. Regulation of dendrite morphogenesis by extrinsic cues. Trends in Neurosciences 38:439–447. DOI: https://doi.org/10.1016/j.tins.2015.05.003, PMID: 26100142 van Amerongen R, Nusse R. 2009. Towards an integrated view of wnt signaling in development. Development 136:3205–3214. DOI: https://doi.org/10.1242/dev.033910, PMID: 19736321

Watanabe K, Furumizo Y, Usui T, Hattori Y, Uemura T. 2017. Nutrient-dependent increased dendritic arborization of somatosensory neurons. Genes to Cells 22:105–114. DOI: https://doi.org/10.1111/gtc.12451, PMID: 27868313

Watanabe K, Kanaoka Y, Mizutani S, Uchiyama H, Yajima S, Watada M, Uemura T, Hattori Y. 2019. Interspecies comparative analyses reveal distinct carbohydrate-responsive systems among Drosophila species. Cell Reports 28:2594–2607. DOI: https://doi.org/10.1016/j.celrep.2019.08.030

Weiner AT, Seebold DY, Torres-Gutierrez P, Folker C, Swope RD, Kothe,GO, Stoltz JG, Zalenski MK, Kozlowski C, Barbera DJ. 2020. Endosomal wnt signaling proteins control microtubule nucleation in dendrites. PLOS Biology 18:647. DOI: https://doi.org/10.1371/journal.pbio.3000647

Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. 2010. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–926. DOI: https://doi.org/10.1038/nature09576, PMID: 21068723

Yamanaka N, Romero NM, Martin FA, Rewitz KF, Sun M, O’Connor MB, Léopold P. 2013. Neuroendocrine control of Drosophila larval light preference. Science 341:1113–1116. DOI: https://doi.org/10.1126/science. 1241210

Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN. 2013. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225. DOI: https://doi.org/ 10.1038/nature11685, PMID: 23222543

Yang H, Kronhamn J, Ekström J-O, Korkut GG, Hultmark D. 2015. Jak/Stat signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Reports 16:1664–1672. DOI: https:// doi.org/10.15252/embr.201540277, PMID: 26412855

Yang WK, Chien CT. 2019. Beyond being innervated: the epidermis actively shapes sensory dendritic patterning. Open Biology 9:180257. DOI: https://doi.org/10.1098/rsob.180257, PMID: 30914004

Yasunaga K, Kanamori T, Morikawa R, Suzuki E, Emoto K. 2010. Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Developmental Cell 18:621–632. DOI: https://doi.org/10.1016/j.devcel.2010.02.010, PMID: 20412776

Zhong L, Hwang RY, Tracey WD. 2010. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Current Biology 20:429–434. DOI: https://doi.org/10.1016/j.cub.2009.12.057, PMID: 20171104

Ziegler AB, Thiele C, Tenedini F, Richard M, Leyendecker P, Hoermann A, Soba P, Tavosanis G. 2017. CellAutonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Reports 21:3346–3353. DOI: https://doi.org/10.1016/j.celrep.2017.11.069, PMID: 29262315

参考文献をもっと見る