リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis

Uehara(Ikenaka), Akihiro 京都大学 DOI:10.14989/doctor.r13564

2023.07.24

概要

Spinal muscular atrophy (SMA) is an inherent neuromuscular
disease caused by mutation or deletion of the survival motor
neuron 1 (SMN1) gene. SMN1 encodes the SMN protein. In the severest form of SMA, infants suffer from severe muscle weakness and
respiratory failure during the first year of life. ...

この論文で使われている画像

参考文献

Akten B, Kye MJ, Hao le T, Wertz MH, Singh S, Nie D, Huang J, Merianda TT, Twiss

JL, Beattie CE, et al (2011) Interaction of survival of motor neuron (SMN)

and HuD proteins with mRNA cpg15 rescues motor neuron axonal

deficits. Proc Natl Acad Sci U S A 108: 10337–10342. doi:10.1073/

pnas.1104928108

Ando S, Tanaka M, Chinen N, Nakamura S, Shimazawa M, Hara H (2020) SMN

protein contributes to skeletal muscle cell maturation via caspase-3

and akt activation. In Vivo 34: 3247–3254. doi:10.21873/invivo.12161

Boyer JG, Murray LM, Scott K, De Repentigny Y, Renaud JM, Kothary R (2013)

Early onset muscle weakness and disruption of muscle proteins in

mouse models of spinal muscular atrophy. Skelet Muscle 3: 24.

doi:10.1186/2044-5040-3-24

Bricceno KV, Martinez T, Leikina E, Duguez S, Partridge TA, Chernomordik LV,

Fischbeck KH, Sumner CJ, Burnett BG (2014) Survival motor neuron

protein deficiency impairs myotube formation by altering myogenic

gene expression and focal adhesion dynamics. Hum Mol Genet 23:

4745–4757. doi:10.1093/hmg/ddu189

Burghes AHM, Beattie CE (2009) Spinal muscular atrophy: Why do low levels

of survival motor neuron protein make motor neurons sick? Nat Rev

Neurosci 10: 597–609. doi:10.1038/nrn2670

Supplementary Information is available at https://doi.org/10.26508/lsa.

202201457

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M,

Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle

differentiation by functioning as a competing endogenous RNA. Cell

147: 358–369. doi:10.1016/j.cell.2011.09.028

Acknowledgements

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL,

Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal

muscle proliferation and differentiation. Nat Genet 38: 228–233.

doi:10.1038/ng1725

We thank Ms. Harumi Watanabe for providing administrative assistance, Dr.

Peter Karagiannis for proofreading the article, Dr. Misaki Ouchida for

graphical assistance, and Drs. Shiori Ando and Hideaki Hara for technical

support. This work was supported by grants from the Japan Society for the

Promotion of Science KAKENHI Grant Numbers 16H0552 (MK Saito) and

20H03642 (MK Saito), the Core Center for iPS Cell Research of Research

Center Network for Realization of Regenerative Medicine from Japan Agency

for Medical Research and Development JP21bm0104001 (T Nakahata and MK

Saito), and the iPS Cell Research Fund (MK Saito).

Author Contributions

A Ikenaka: conceptualization, data curation, investigation, visualization, and writing—original draft.

Y Kitagawa: data curation, investigation, visualization, methodology,

and writing—original draft.

M Yoshida: conceptualization, investigation, and writing—review

and editing.

C-Y Lin: investigation, visualization, and writing—review and editing.

A Niwa: data curation, supervision, and writing—review and editing.

SMN regulates the MYOD-miRNA axis during myogenesis Ikenaka et al.

Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and

microRNA-206 regulate skeletal muscle satellite cell proliferation and

differentiation by repressing Pax7. J Cell Biol 190: 867–879. doi:10.1083/

jcb.200911036

De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, Kirschner J,

Kuntz NL, Parsons JA, Ryan MM, et al (2019) Nusinersen initiated in

infants during the presymptomatic stage of spinal muscular atrophy:

Interim efficacy and safety results from the Phase 2 NURTURE study.

Neuromuscul Disord 29: 842–856. doi:10.1016/j.nmd.2019.09.007

Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Yamashita M,

Rigo F, Hung G, Schneider E, et al (2016) Treatment of infantile-onset

spinal muscular atrophy with nusinersen: A phase 2, open-label,

dose-escalation study. Lancet 388: 3017–3026. doi:10.1016/S01406736(16)31408-8

Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, Chiriboga

CA, Saito K, Servais L, Tizzano E, et al (2017) Nusinersen versus sham

control in infantile-onset spinal muscular atrophy. N Engl J Med 377:

1723–1732. doi:10.1056/NEJMoa1702752

Frangini M, Franzolin E, Chemello F, Laveder P, Romualdi C, Bianchi V,

Rampazzo C (2013) Synthesis of mitochondrial DNA precursors during

myogenesis, an analysis in purified C2C12 myotubes. J Biol Chem 288:

5624–5635. doi:10.1074/jbc.M112.441147

https://doi.org/10.26508/lsa.202201457

vol 6 | no 3 | e202201457

19 of 21

Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman

T, Chen K, Schindler AB, et al (2018) Senataxin mutation reveals how

R-loops promote transcription by blocking DNA methylation at gene

promoters. Mol Cell 69: 426–437.e7. doi:10.1016/j.molcel.2017.12.030

mouse model of spinal muscular atrophy (SMA). Int J Mol Sci 16:

18312–18327. doi:10.3390/ijms160818312

Martin M (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet J 17. doi:10.14806/ej.17.1.200

Hao le T, Duy PQ, An M, Talbot J, Iyer CC, Wolman M, Beattie CE (2017) HuD and

the survival motor neuron protein interact in motoneurons and are

essential for motoneuron development, function, and mRNA

regulation. J Neurosci 37: 11559–11571. doi:10.1523/JNEUROSCI.152817.2017

Martinez TL, Kong L, Wang X, Osborne MA, Crowder ME, Van Meerbeke JP, Xu X,

Davis C, Wooley J, Goldhamer DJ, et al (2012) Survival motor neuron

protein in motor neurons determines synaptic integrity in spinal

muscular atrophy. J Neurosci 32: 8703–8715. doi:10.1523/

JNEUROSCI.0204-12.2012

Hayhurst M, Wagner AK, Cerletti M, Wagers AJ, Rubin LL (2012) A cellautonomous defect in skeletal muscle satellite cells expressing low

levels of survival of motor neuron protein. Dev Biol 368: 323–334.

doi:10.1016/j.ydbio.2012.05.037

Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes

L, Alfano L, Berry K, Church K, et al (2017) Single-dose genereplacement therapy for spinal muscular atrophy. N Engl J Med 377:

1713–1722. doi:10.1056/NEJMoa1706198

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C,

Singh H, Glass CK (2010) Simple combinations of lineage-determining

transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Mol Cell 38: 576–589. doi:10.1016/

j.molcel.2010.05.004

Miller N, Shi H, Zelikovich AS, Ma YC (2016) Motor neuron mitochondrial

dysfunction in spinal muscular atrophy. Hum Mol Genet 25: 3395–3406.

doi:10.1093/hmg/ddw262

Hellbach N, Peterson S, Haehnke D, Shankar A, LaBarge S, Pivaroff C, Saenger

S, Thomas C, McCarthy K, Ebeling M, et al (2018) Impaired myogenic

development, differentiation and function in hESC-derived SMA

myoblasts and myotubes. PLoS One 13: e0205589. doi:10.1371/

journal.pone.0205589

Hoang P, Jacquir S, Lemus S, Ma Z (2019) Quantification of contractile dynamic

complexities exhibited by human stem cell-derived cardiomyocytes

using nonlinear dimensional analysis. Sci Rep 9: 14714. doi:10.1038/

s41598-019-51197-7

Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z,

Reyes M (2010) Absence of CD34 on murine skeletal muscle satellite

cells marks a reversible state of activation during acute injury. PLoS

One 5: e10920. doi:10.1371/journal.pone.0010920

Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett

CF, Rigo F, Krainer AR, et al (2017) SMN deficiency in severe models of

spinal muscular atrophy causes widespread intron retention and DNA

damage. Proc Natl Acad Sci U S A 114: E2347–E2356. doi:10.1073/

pnas.1613181114

Kim JK, Jha NN, Feng Z, Faleiro MR, Chiriboga CA, Wei-Lapierre L, Dirksen RT, Ko

CP, Monani UR (2020) Muscle-specific SMN reduction reveals motor

neuron-independent disease in spinal muscular atrophy models. J

Clin Invest 130: 1271–1287. doi:10.1172/JCI131989

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2.

Nat Methods 9: 357–359. doi:10.1038/nmeth.1923

Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina

TO, Xing L, Bassell GJ, Burghes AH (2005) SMNΔ7, the major product of

the centromeric survival motor neuron (SMN2) gene, extends survival

in mice with spinal muscular atrophy and associates with full-length

SMN. Hum Mol Genet 14: 845–857. doi:10.1093/hmg/ddi078

Lin CY, Yoshida M, Li LT, Ikenaka A, Oshima S, Nakagawa K, Sakurai H, Matsui E,

Nakahata T, Saito MK (2019) iPSC-derived functional human

neuromuscular junctions model the pathophysiology of

neuromuscular diseases. JCI Insight 4: e124299. doi:10.1172/

jci.insight.124299

Long KK, O’Shea KM, Khairallah RJ, Howell K, Paushkin S, Chen KS, Cote SM,

Webster MT, Stains JP, Treece E, et al (2019) Specific inhibition of

myostatin activation is beneficial in mouse models of SMA therapy.

Hum Mol Genet 28: 1076–1089. doi:10.1093/hmg/ddy382

Nicole S, Desforges B, Millet G, Lesbordes J, Cifuentes-Diaz C, Vertes D, Cao ML,

De Backer F, Languille L, Roblot N, et al (2003) Intact satellite cells lead

to remarkable protection against Smn gene defect in differentiated

skeletal muscle. J Cell Biol 161: 571–582. doi:10.1083/jcb.200210117

Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR, Klinger

KW, Shihabuddin LS, Cheng SH (2010) CNS-targeted gene therapy

improves survival and motor function in a mouse model of spinal

muscular atrophy. J Clin Invest 120: 1253–1264. doi:10.1172/JCI41615

Piazzon N, Rage F, Schlotter F, Moine H, Branlant C, Massenet S (2008) In vitro

and in cellulo evidences for association of the survival of motor

neuron complex with the fragile X mental retardation protein. J Biol

Chem 283: 5598–5610. doi:10.1074/jbc.M707304200

Przanowska RK, Sobierajska E, Su Z, Jensen K, Przanowski P, Nagdas S, Kashatus

JA, Kashatus DF, Bhatnagar S, Lukens JR, et al (2020) miR-206 family is

important for mitochondrial and muscle function, but not essential for

myogenesis in vitro. FASEB J 34: 7687–7702. doi:10.1096/fj.201902855RR

Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy

disease gene product SMN and its associated protein SIP1 are in a

complex with spliceosomal snRNP proteins. Cell 90: 1013–1021.

doi:10.1016/s0092-8674(00)80367-0

Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic

factors that regulate expression of muscle-specific microRNAs. Proc

Natl Acad Sci U S A 103: 8721–8726. doi:10.1073/pnas.0602831103

Remels AH, Langen RC, Schrauwen P, Schaart G, Schols AM, Gosker HR (2010)

Regulation of mitochondrial biogenesis during myogenesis. Mol Cell

Endocrinol 315: 113–120. doi:10.1016/j.mce.2009.09.029

Ripolone M, Ronchi D, Violano R, Vallejo D, Fagiolari G, Barca E, Lucchini V,

Colombo I, Villa L, Berardinelli A, et al (2015) Impaired muscle

mitochondrial biogenesis and myogenesis in spinal muscular

atrophy. JAMA Neurol 72: 666–675. doi:10.1001/jamaneurol.2015.0178

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms

regulating skeletal muscle growth and atrophy. FEBS J 280: 4294–4314.

doi:10.1111/febs.12253

Shafey D, Cote PD, Kothary R (2005) Hypomorphic Smn knockdown C2C12

myoblasts reveal intrinsic defects in myoblast fusion and myotube

morphology. Exp Cell Res 311: 49–61. doi:10.1016/j.yexcr.2005.08.019

Shao W, Zeitlinger J (2017) Paused RNA polymerase II inhibits new

transcriptional initiation. Nat Genet 49: 1045–1051. doi:10.1038/ng.3867

Lotti F, Imlach WL, Saieva L, Beck ES, Hao L, Li DK, Jiao W, Mentis GZ, Beattie CE,

McCabe BD, et al (2012) An SMN-dependent U12 splicing event

essential for motor circuit function. Cell 151: 440–454. doi:10.1016/

j.cell.2012.09.012

Sharma A, Lambrechts A, Hao Lt, Le TT, Sewry CA, Ampe C, Burghes AH, Morris

GE (2005) A role for complexes of survival of motor neurons (SMN)

protein with gemins and profilin in neurite-like cytoplasmic

extensions of cultured nerve cells. Exp Cell Res 309: 185–197.

doi:10.1016/j.yexcr.2005.05.014

Luchetti A, Ciafre SA, Murdocca M, Malgieri A, Masotti A, Sanchez M, Farace MG,

Novelli G, Sangiuolo F (2015) A perturbed MicroRNA expression pattern

characterizes embryonic neural stem cells derived from a severe

Shen L, Shao N, Liu X, Nestler E (2014) ngs.plot: Quick mining and visualization

of next-generation sequencing data by integrating genomic

databases. BMC Genomics 15: 284. doi:10.1186/1471-2164-15-284

SMN regulates the MYOD-miRNA axis during myogenesis Ikenaka et al.

https://doi.org/10.26508/lsa.202201457

vol 6 | no 3 | e202201457

20 of 21

Shintaku J, Peterson JM, Talbert EE, Gu JM, Ladner KJ, Williams DR, Mousavi K,

Wang R, Sartorelli V, Guttridge DC (2016) MyoD regulates skeletal

muscle oxidative metabolism cooperatively with alternative NF-κB.

Cell Rep 17: 514–526. doi:10.1016/j.celrep.2016.09.010

Tadesse H, Deschenes-Furry J, Boisvenue S, Cote J (2007) KH-type splicing

regulatory protein interacts with survival motor neuron protein and is

misregulated in spinal muscular atrophy. Hum Mol Genet 17: 506–524.

doi:10.1093/hmg/ddm327

Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T, Nishino T, Shoji

E, Sehara-Fujisawa A, Manabe Y, et al (2013) Efficient and reproducible

myogenic differentiation from human iPS cells: Prospects for

modeling miyoshi myopathy in vitro. PLoS One 8: e61540. doi:10.1371/

journal.pone.0061540

Trotta AP, Gelles JD, Serasinghe MN, Loi P, Arbiser JL, Chipuk JE (2017)

Disruption of mitochondrial electron transport chain function

potentiates the pro-apoptotic effects of MAPK inhibition. J Biol Chem

292: 11727–11739. doi:10.1074/jbc.M117.786442

Wang LT, Chiou SS, Liao YM, Jong YJ, Hsu SH (2014) Survival of motor neuron

protein downregulates miR-9 expression in patients with spinal muscular

atrophy. Kaohsiung J Med Sci 30: 229–234. doi:10.1016/j.kjms.2013.12.007

Wang C, Liu W, Nie Y, Qaher M, Horton HE, Yue F, Asakura A, Kuang S (2017) Loss

of MyoD promotes fate transdifferentiation of myoblasts into brown

adipocytes. EBioMedicine 16: 212–223. doi:10.1016/j.ebiom.2017.01.015

Wertz MH, Winden K, Neveu P, Ng SY, Ercan E, Sahin M (2016) Cell-type-specific

miR-431 dysregulation in a motor neuron model of spinal muscular

atrophy. Hum Mol Genet 25: 2168–2181. doi:10.1093/hmg/ddw084

Wust S, Drose S, Heidler J, Wittig I, Klockner I, Franko A, Bonke E, Gunther S,

Gartner U, Boettger T, et al (2018) Metabolic maturation during muscle

stem cell differentiation is achieved by miR-1/133a-mediated

inhibition of the Dlk1-Dio3 mega gene cluster. Cell Metab 27:

1026–1039.e6. doi:10.1016/j.cmet.2018.02.022

Xiao Y, Zhang J, Shu X, Bai L, Xu W, Wang A, Chen A, Tu W-Y, Wang J, Zhang K,

et al (2020) Loss of mitochondrial protein CHCHD10 in skeletal muscle

SMN regulates the MYOD-miRNA axis during myogenesis Ikenaka et al.

causes neuromuscular junction impairment. Hum Mol Genet 29:

1784–1796. doi:10.1093/hmg/ddz154

Yamazaki T, Chen S, Yu Y, Yan B, Haertlein TC, Carrasco MA, Tapia JC, Zhai B,

Das R, Lalancette-Hebert M, et al (2012) FUS-SMN protein interactions

link the motor neuron diseases ALS and SMA. Cell Rep 2: 799–806.

doi:10.1016/j.celrep.2012.08.025

Yan K, An T, Zhai M, Huang Y, Wang Q, Wang Y, Zhang R, Wang T, Liu J, Zhang Y,

et al (2019) Mitochondrial miR-762 regulates apoptosis and

myocardial infarction by impairing ND2. Cell Death Dis 10: 500.

doi:10.1038/s41419-019-1734-7

Yoshida M, Kitaoka S, Egawa N, Yamane M, Ikeda R, Tsukita K, Amano N,

Watanabe A, Morimoto M, Takahashi J, et al (2015) Modeling the early

phenotype at the neuromuscular junction of spinal muscular atrophy

using patient-derived iPSCs. Stem Cell Rep 4: 561–568. doi:10.1016/

j.stemcr.2015.02.010

Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008) SMN

deficiency causes tissue-specific perturbations in the repertoire of

snRNAs and widespread defects in splicing. Cell 133: 585–600.

doi:10.1016/j.cell.2008.03.031

Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, et al

(2014) MicroRNA directly enhances mitochondrial translation during

muscle differentiation. Cell 158: 607–619. doi:10.1016/

j.cell.2014.05.047

Yanling Zhao D, Gish G, Braunschweig U, Li Y, Ni Z, Schmitges FW, Zhong G, Liu

K, Li W, Moffat J, et al (2016) SMN and symmetric arginine

dimethylation of RNA polymerase II C-terminal domain control

termination. Nature 529: 48–53. doi:10.1038/nature16469

License: This article is available under a Creative

Commons License (Attribution 4.0 International, as

described at https://creativecommons.org/

licenses/by/4.0/).

https://doi.org/10.26508/lsa.202201457

vol 6 | no 3 | e202201457

21 of 21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る