リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of logging on landscape-level tree diversity across an elevational gradient in Bornean tropical forests」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of logging on landscape-level tree diversity across an elevational gradient in Bornean tropical forests

Yano, Sakiko Aoyagi, Ryota Shogoro, Fujiki Sugau, John B. Pereira, Joan T. Kitayama, Kanehiro 京都大学 DOI:10.1016/j.gecco.2021.e01739

2021.09

概要

Logging has caused a substantial loss of biodiversity and associated ecosystem services. Therefore, it is important to examine how logging affects biodiversity on a landscape scale to plan responsible management of a tropical forest. Although a number of plot-based studies have shown the effect of logging on local tree species richness (alpha diversity), the effect on species turnover along environmental gradients (beta diversity) remains largely unknown. In this study, we evaluated how logging disturbance affects alpha and beta diversity along an elevational gradient on the eastern slope of Mount Trus Madi in Borneo. We further investigated how pioneer and late-successional tree species differed in the habitat range to clarify the mechanism underlying the beta diversity pattern. We selected 90 plots, each with a radius of 20 m, with a range of disturbance intensity (five classes from highly degraded forests to pristine forests) in lower (285–600 m asl) and higher elevation areas (600–1105 m asl). The remaining above-ground biomass, which is an indicator of past disturbance intensity, strongly varied across the plots (5.4–570.6 and 3.1–771.6 Mg ha−1 in lower and higher elevation areas, respectively). Diameter at breast height (DBH) and species name were recorded for all trees with a DBH larger than 10 cm. We calculated the species number per 20 individual trees for each plot to represent alpha diversity. Beta diversity along the elevational gradient was calculated as the slope of the relationship between standardized compositional dissimilarity (beta deviation) and the elevational difference. Alpha diversity decreased in higher (17.3–12.3 species per 20 trees) and lower areas (16.8–11.3 species per 20 trees) with increasing logging intensity. Beta diversity along the elevational gradient also decreased to almost zero in highly disturbed areas. Pioneer tree species had a wider elevational range than late-successional species. These results suggest that the shift in dominant tree species after logging (from late-successional to pioneer species) was the main driver of the decline in beta diversity along the elevational gradient. We conclude that preserving and restoring beta diversity are important to sustain tropical production forests.

この論文で使われている画像

参考文献

Aiba, S., Kitayama, K., 1999. Structure, composition and species diversity in an altitude-substrate matrix of rainforest tree communities on Mount Kinabalu, Borneo.

Plant Ecol. 140, 139–157. https://doi.org/10.1023/A:1009710618040.

Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B.,

Stegen, J.C., Swenson, N.G., 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28. https://doi.org/

10.1111/j.1461-0248.2010.01552.x.

Aoyagi, R., Imai, N., Kitayama, K., 2013. Ecological significance of the patches dominated by pioneer trees for the regeneration of dipterocarps in a Bornean loggedover secondary forest. For. Ecol. Manag. 289, 378–384. https://doi.org/10.1016/j.foreco.2012.10.037.

Aoyagi, R., Imai, N., Fujiki, S., Sugau, J.B., Pereira, J.T., Kitayama, K., 2017. The mixing ratio of tree functional groups as a new index for biodiversity monitoring in

Bornean production forests. For. Ecol. Manag. 403, 27–43. https://doi.org/10.1016/j.foreco.2017.07.026.

Ashton, P.S., 1969. Speciation among tropical forest trees: some deductions in the Light of Recent Evidence. Biol. J. Linn. Soc. 1, 155–196.

Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Lees, A.C., Nally, R., Mac, Thomson, J.R., Ferraz, S.F. de B., Louzada, J., Oliveira, V.H.F., Parry, L., Ribeiro de

Castro Solar, R., Vieira, I.C.G., Arag˜

ao, L.E.O.C., Begotti, R.A., Braga, R.F., Cardoso, T.M., Jr, R.C. de O., Souza Jr, C.M., Moura, N.G., Nunes, S.S., Siqueira, J.V.,

Pardini, R., Silveira, J.M., Vaz-de-Mello, F.Z., Veiga, R.C.S., Venturieri, A., Gardner, T.A., 2016. Anthropogenic disturbance in tropical forests can double

biodiversity loss from deforestation. Nature 535, 144–147. https://doi.org/10.1038/nature18326.

Bawa, K.S., Seidler, R., 1998. Natural forest management and conservation of biodiversity in tropical forests. Conserv. Biol. 12, 46–55. https://doi.org/10.1046/

j.1523-1739.1998.96480.x.

Bazzaz, F., 1979. The physiological ecology of plant succession. Annu. Rev. Ecol. Syst. 10, 351–371. https://doi.org/10.1146/annurev.es.10.110179.002031.

Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P., 2000. Biodiversity, disturbances, ecosystem function and management of european forests. For. Ecol. Manag. 132,

39–50. https://doi.org/10.1016/S0378-1127(00)00378-9.

Bivand, R., DWS, W., 2018. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748. https://doi.org/10.1007/s11749-0180599-x.

Bongers, F., Poorter, L., Hawthorne, W.D., Sheil, D., 2009. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree

diversity. Ecol. Lett. 12, 798–805. https://doi.org/10.1111/j.1461-0248.2009.01329.x.

Bunyavejchewin, S., Lafrankie, J.V., Baker, P.J., Kanzaki, M., Ashton, P.S., Yamakura, T., 2003. Spatial distribution patterns of the dominant canopy dipterocarp

species in a seasonal dry evergreen forest in western Thailand. For. Ecol. Manag. 175, 87–101. https://doi.org/10.1016/S0378-1127(02)00126-3.

aceres, M. De, Legendre, P., Valencia, R., Cao, M., Chang, L., Chuyong, G., Condit, R., Hao, Z., 2012. The variation of tree beta diversity across a global network of

forest plots. Glob. Ecol. Biogeogr. 21, 1191–1202. https://doi.org/10.1111/j.1466-8238.2012.00770.x.

Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J., 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data.

Ecol. Lett. 8, 148–1591708. https://doi.org/10.1111/j.1461-0248.2004.00707.x.

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366. https://doi.

org/10.1111/j.1461-0248.2009.01285.x.

10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Global Ecology and Conservation 29 (2021) e01739

S. Yano et al.

Chave, J., R´ejou-M´

echain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., MartínezYrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., P´

elissier, R., Ploton, P.,

Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20,

3177–3190. https://doi.org/10.1111/gcb.12629.

Clarke, P.J., Knox, K.J.E., Butler, D., 2011. Fire intensity, serotiny and seed release in 19 woody species: evidence for risk spreading among wind-dispersed and

resprouting syndromes. Aust. J. Bot. 58, 629–636. https://doi.org/10.1071/BT10193.

Condit, R., Ashton, P., Baker, P., Bunyavejchewin, S., 2000. Spatial patterns in the distribution of tropical tree species. Science 288, 1414–1418. https://doi.org/

10.1126/science.288.5470.1414.

Connell, J.H., Series, N., Mar, N., 1978. Diversity in Tropical Rain Forests and Coral Reefs High diversity of trees and corals is maintained. Science 199, 1302–1310.

https://doi.org/10.2307/1745369.

Cubi˜

na, A., Aide, T.M., 2001. The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33, 260–267. https://doi.org/

10.1646/0006-3606(2001)033.

Denslow, Julie Sloan, Gomez Diaz, A.E., 1990. Seed rain to tree-fall gaps in a neotropical rain forest. Can. J. For. Res. 20, 642–648. https://doi.org/10.1139/x90-086.

Dufrˆene, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366. https://doi.

org/10.2307/2963459.

Edwards, D.P., 2016. Conservation: the rainforest’s “do not disturb” signs. Nature 535, 44–45. https://doi.org/10.1038/nature18901.

Edwards, D.P., Tobias, J.A., Sheil, D., Meijaard, E., Laurance, W.F., 2014. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol.

29, 1–10. https://doi.org/10.1016/j.tree.2014.07.003.

Edwards, W., Westoby, M., 1996. Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts.

J. Biogeogr. 23, 329–338. https://doi.org/10.1046/j.1365-2699.1996.00034.x.

Fenner, M., Thompson, K., 2005. The Ecology of Seeds. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511614101.

Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.

A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Review global consequences of land use. Science 8, 570–574.

https://doi.org/10.1126/science.1111772.

Fredericksen, T.S., Putz, F.E., 2003. Silvicultural intensification for tropical forest conservation. Biodivers. Conserv. 12, 1445–1453. https://doi.org/10.1023/A:

1023673625940.

Fujiki, S., Aoyagi, R., Tanaka, A., Imai, N., Kusma, A.D., Kurniawan, Y., Lee, Y.F., Sugau, J.B., Pereira, J.T., Samejima, H., Kitayama, K., 2016. Large-scale mapping of

tree-community composition as a surrogate of forest degradation in Bornean tropical rain forests. Land 5, 45. https://doi.org/10.3390/land5040045.

Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023

https://doi.org/10.1088/1748-9326/2/4/045023.

Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., et al., 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478,

378–381. https://doi.org/10.1038/nature10425.

Griscom, H.P., Ashton, M.S., 2011. Restoration of dry tropical forests in Central America: a review of pattern and process. For. Ecol. Manag. 261, 1564–1579. https://

doi.org/10.1016/j.foreco.2010.08.027.

Grubb, P.J., Lloyd, J.R., Pennington, T.D., 1963. A comparison of montane and lowland rain forest in Ecuador I. The forest structure, physiognomy, and floristics. J.

Ecol. 51, 567–601.

Guimara, D.M., Gualberto, D., Pereira, S., Cristina, G., Menino, D.O., Yue, D., Tng, P., Pires, G.G., Aure, M., 2014. Beta-diversity in seasonally dry tropical forests

(SDTF) in the Caatinga Biogeographic Domain, Brazil, and its implications for conservation. Biodivers. Conserv. 23, 217–232. https://doi.org/10.1007/s10531013-0599-9.

Hayward, R.M., Banin, L.F., Burslem, D.F.R.P., Chapman, D.S., Philipson, C.D., Cutler, M.E.J., Reynolds, G., Nilus, R., Dent, D.H., 2021. Three decades of post-logging

tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag. 488, 119036 https://doi.org/10.1016/j.

foreco.2021.119036.

He, F., Legendre, P., LaFrankie, J., 1997. Distribution patterns of tree species in a Malaysian tropical rain forest. J. Veg. Sci. 8, 105–114. https://doi.org/10.2307/

3237248.

Hendrickx, F., Maelfait, J., Wingerden, W.V.A.N., Schweiger, O., Speelmans, M., Aviron, S., Augenstein, I., Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diek¨

otter, T.I.

M., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., Bugter, R.O.B., 2007. How landscape structure, land-use intensity and habitat diversity affect

components of total arthropod diversity in agricultural landscapes, 340–351. doi:10.1111/j.1365–2664.2006.01270.x.

Holthuljzen, A.M.A., Boerboom, J.H.A., 1982. The Cecropia seedbank in the Surinam lowland rain forest. Biotropica 14, 62–68.

Hosonuma, N., Herold, M., De Sy, V., De Fries, R.S., Brockhaus, M., Verchot, L., Angelsen, A., Romijn, E., 2012. An assessment of deforestation and forest degradation

drivers in developing countries. Environ. Res. Lett. 7, 4009 https://doi.org/10.1088/1748-9326/7/4/044009.

Imai, N., Seino, T., Aiba, S., Takyu, M., Titin, J., Kitayama, K., 2012. Effects of selective logging on tree species diversity and composition of Bornean tropical rain

forests at different spatial scales. Plant Ecol. 213, 1413–1424. https://doi.org/10.1007/s11258-012-0100-y.

Imai, N., Tanaka, A., Samejima, H., Sugau, J.B., Pereira, J.T., Titin, J., Kurniawan, Y., Kitayama, K., 2014. Tree community composition as an indicator in biodiversity

monitoring of REDD+. For. Ecol. Manag. 313, 169–179. https://doi.org/10.1016/j.foreco.2013.10.041.

Imai, N., Samejima, H., Demies, M., Tanaka, A., Sugau, J.B., Pereira, J.T., Kitayama, K., 2016. Response of tree species diversity to disturbance in humid tropical

forests of Borneo. J. Veg. Sci. 27, 739–748. https://doi.org/10.1111/jvs.12401.

Itow, S., 1991. Species turnover and diversity patterns along an evergreen broad-leaved forest coenocline. J. Veg. Sci. 2, 477–484. https://doi.org/10.2307/3236029.

Karp, D.S., Andrew, J., Zook, J., Ranganathan, J., Ehrlich, P.R., Daily, G.C., 2012. Intensive agriculture erodes b -diversity at large scales. Ecol. Lett. 15, 963–970.

https://doi.org/10.1111/j.1461-0248.2012.01815.x.

Kitayama, K., 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102, 149–171. https://doi.org/10.1007/BF00044731.

Kitayama, K., 1996. Patterns of species diversity on an oceanic versus a continental island mountain: a hypothesis on species diversification. J. Veg. Sci. 7, 879–888.

https://doi.org/10.2307/3236463.

Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., Stegen, J.C., Vellend, M., Boyle, B., Anderson, M.J., Cornell, H.V., Davies, K.F.,

Freestone, A.L., Inouye, B.D., Harrison, S.P., Myers, J.A., 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333,

1755–1758. https://doi.org/10.1126/science.1208584.

Kuussaari, M., Ekroos, J., Helio, J., 2010. Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes, 459–467. doi:10.1111/j.

1365–2664.2009.01767.x.

Lane, C.S., 2007. Latitudinal range variation of trees in the United States: a reanalysis of the applicability of Rapoport’s rule. Prof. Geogr. Geogr. 59, 115–130. https://

doi.org/10.1111/j.1467-9272.2007.00595.x.

Lieberman, D., Lieberman, M., Peralta, R., Hartshorn, G.S., 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol.

84, 137–152. 〈https://www.jstor.org/stable/2261350〉.

Lieberman, Diana, Lieberman, Milton, Hartshorn, G.S., Peralta, R., 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. J. Ecol. 73,

505–516. https://doi.org/10.2307/2260490.

opez-Martínez, J.O., Hern´

andez-Stefanoni, J.L., Dupuy, J.M., Meave, J.A., 2013a. Partitioning the variation of woody plant β-diversity in a landscape of secondary

tropical dry forests across spatial scales. J. Veg. Sci. 24, 33–45. https://doi.org/10.1111/j.1654-1103.2012.01446.x.

opez-Martínez, Jorge Omar, Sanaphre-Villanueva, L., Dupuy, J.M., Hern´

andez-Stefanoni, J.L., Meave, J.A., Gallardo-Cruz, J.A., 2013b. β-Diversity of functional

groups of woody plants in a tropical dry forest in Yucatan. PLoS One 8, e73660. https://doi.org/10.1371/journal.pone.0073660.

Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J., Bohning-Gaese, K., 2012. Meta-analysis of the effects of human

disturbance on seed dispersal by animals. Conserv. Biol. 26, 1072–1081. https://doi.org/10.1111/j.1523-1739.2012.01927.x.

11

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Global Ecology and Conservation 29 (2021) e01739

S. Yano et al.

Molino, J.-F., Sabatier, D., 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294, 1702–1704. https://doi.

org/10.1126/science.1060284.

Mori, A.S., Shiono, T., Koide, D., Kitagawa, R., Ota, A.T., 2013. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob. Ecol.

Biogeogr. 22, 878–888. https://doi.org/10.1111/geb.12058.

Morin, X., Chuine, I., 2006. Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecol.

Lett. 9, 185–195. https://doi.org/10.1111/j.1461-0248.2005.00864.x.

Myers, J.A., Chase, J.M., Jim´enez, I., Jørgensen, P.M., Araujo-Murakami, A., Paniagua-Zambrana, N., Seidel, R., 2013. Beta-diversity in temperate and tropical forests

reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157. https://doi.org/10.1111/ele.12021.

Nzunda, E.F., 2011. Sprouting, succession and tree species diversity in a South African coastal dune forest. J. Trop. Ecol. 27, 195–203. https://doi.org/10.1017/

S0266467410000659.

Oakwood, M., Jurado, E., Leishman, M., Westoby, M., 1993. Geographic ranges of plant species in relation to dispersal morphology, growth form and diaspore weight.

J. Biogeogr. 20, 563–572. https://doi.org/10.2307/2845727.

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O′ Hara, R.B., Simpson, G.L., Solymus, P., Stevens, M.H.H.,

Szoecs, E., Wagner, H., 2017. Community Ecology Package, Package ‘ vegan ’. R package version 2.4-5. 0-291. doi:ISBN 0-387-95457-0.

¨ en, J., Odor,

Paillet, Y., Berg`es, L., HjAlt´

P., Avon, C., Bernhardt-R¨

omermann, M., Bijlsma, R.J., De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S.,

` M.T., Schmidt, W., Standov´

Magura, T., Matesanz, S., M´esz´

aros, I., SebastiA,

ar, T., TOthm´

er´esz, B., Uotila, A., Valladares, F., Vellak, K., Virtanen, R., 2010.

Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24, 101–112. https://doi.org/

10.1111/j.1523-1739.2009.01399.x.

Paoli, G.D., Curran, L.M., Zak, D.R., 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest

trees. J. Ecol. 94, 157–170. https://doi.org/10.1111/j.1365-2745.2005.01077.x.

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2003. Definitions and Methodological Options to

Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types, The Institute for Global Environmental

Strategies (IGES). doi:10.1016/B978–0-12–375067-9.00128–5.

Putz, F.E., Sist, P., Fredericksen, T., Dykstra, D., 2008. Reduced-impact logging: challenges and opportunities. For. Ecol. Manag. 256, 1427–1433. https://doi.org/

10.1016/j.foreco.2008.03.036.

Putz, F.E., Zuidema, P.A., Synnott, T., Pe, M., Pinard, M.A., Sheil, D., Vanclay, J.K., Sist, P., Gourlet-fleury, S., Griscom, B., Palmer, J., Zagt, R., 2012. Sustaining

conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303. https://doi.org/10.1111/j.1755263X.2012.00242.x.

Roberts, D.W., 2016. Ordination and Multivariate Analysis for Ecology. R package Version 1.8-0 http://eco.

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Runting, R.K., Meijaard, E., Abram, N.K., Wells, J.A., Gaveau, D.L.A., Ancrenaz, M., Possingham, H.P., Wich, S.A., Ardiansyah, F., Gumal, M.T., Ambu, L.N., Wilson, K.

A., 2015. Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nat. Commun. 6, 6819. https://doi.org/

10.1038/ncomms7819.

Sahu, P.K., Sagar, R., Singh, J.S., 2008. Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. Appl. Veg.

Sci. 11, 461–470. https://doi.org/10.3170/2008-7-18537.

Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J., Sheil, D., Meijaard, E., Venter, M., Boedhihartono, A.K., Day, M., Garcia, C., Oosten, C., Buck, L.E., 2013. Ten

principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 110, 8349–8356. https://

doi.org/10.1073/pnas.1210595110.

Slik, J.W.F., Bernard, C.S., Breman, F.C., Van Beek, M., Salim, A., Sheil, D., 2008. Wood density as a conservation tool: quantification of disturbance and identification

of conservation-priority areas in tropical forests. Conserv. Biol. 22, 1299–1308. https://doi.org/10.1111/j.1523-1739.2008.00986.x.

Slik, J.W.F., Raes, N., Aiba, S.-I., Brearley, F.Q., Cannon, C.H., Meijaard, E., Nagamasu, H., Nilus, R., Paoli, G., Poulsen, A.D., Sheil, D., Suzuki, E., van Valkenburg, J.L.

C.H., Webb, C.O., Wilkie, P., Wulffraat, S., 2009. Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers. Distrib. 15,

523–532. https://doi.org/10.1111/j.1472-4642.2009.00557.x.

Smith, J.R., Bagchi, R., Ellens, J., Kettle, C.J., Burslem, D.F.R.P., Colin, R., Khoo, E., Ghazoul, J., 2015. Predicting dispersal of auto-gyrating fruit in tropical trees: a

case study from the Dipterocarpaceae. Ecol. Evol. 5, 1794–1801. https://doi.org/10.1002/ece3.1469.

Solar, R., Ri, de, C., Barlow, J., Ferreira, J., Berenguer, E., Lees, A.C., Thomson, J.R., Julio, L., Maues, M., Moura, N.G., Oliveira, V.H.F., Chaul, J.C.M., Schoereder, J.

H., Vieira, I.C.G., Nally, R., Mac, Gardner, T.A., 2015. How pervasive is biotic homogenization in human-modified tropical forest landscapes ? Ecol. Lett. 18,

1108–1118. https://doi.org/10.1111/ele.12494.

Stevens, G.C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256. 〈https://www.jstor.org/

stable/2462300〉.

Tello, J.S., Myers, J.A., Macía, M.J., Fuentes, A.F., Cayola, L., Arellano, G., Loza, M.I., Torrez, V., Cornejo, M., Miranda, T.B., Peter, M.J., 2015. Elevational gradients

in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS One 10, e0121458. https://doi.org/10.1371/

journal.pone.0121458.

Thompson, K, Gaston, K.J., Band, S.R., 1999. Range size, dispersal and niche breadth in the herbaceous flora of central England. J. Ecology 87, 150–155. https://doi.

org/10.1046/j.1365-2745.1999.00334.x.

Vazquez, J.A., Givnish, T.J., 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. J. Ecol. 86, 999–1020.

https://doi.org/10.1046/j.1365-2745.1998.00325.x.

Vellend, M., Verheyen, K., Flinn, K.M., Jacquemyn, H., Kolb, A., Calster, H.V.A.N., Peterken, G., Graae, B.J., Bellemare, J., Honnay, O., Brunet, J., Wulf, M., Gerhardt,

F., Hermy, M., 2007. Homogenization of forest plant communities and weakening of species – environment relationships via agricultural land use, 565–573. doi:

10.1111/j.1365–2745.2007.01233.x.

Vellend, M., Baeten, L., Myers-Smith, I.H., Elmendorf, S.C., Beausejour, R., Brown, C.D., De Frenne, P., Verheyen, K., Wipf, S., 2013. Global meta-analysis reveals no

net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. USA 110, 19456–19459. https://doi.org/10.1073/pnas.1312779110.

Verissimo, A., Barreto, P., Mattos, M., Tarifa, R., Uhl, C., 1992. Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: the

case of Paragominas. For. Ecol. Manag. 55, 169–199. https://doi.org/10.1016/0378-1127(92)90099-U.

Verschuyl, J., Riffell, S., Miller, D., Wigley, T.B., 2011. Biodiversity response to intensive biomass production from forest thinning in North American forests - a metaanalysis. For. Ecol. Manag. 261, 221–232. https://doi.org/10.1016/j.foreco.2010.10.010.

Whittaker, R.H., 1972. Evolution and measurement of species diversity. Taxon 21, 213–251. 〈https://www.jstor.org/stable/1218190〉.

Wilcove, D.S., Giam, X., Edwards, D.P., Fisher, B., Koh, L.P., 2013. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol.

Evol. 28, 531–540. https://doi.org/10.1016/j.tree.2013.04.005.

Willis, K.J., Whittaker, R.J., 2002. Species diversity - scale matters. Science 295, 1245–1248. https://doi.org/10.1126/science.1067335.

Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., 2009. Data from: towards a worldwide

wood economics spectrum. Dryad Digital Repository. https://doi.org/10.5061/dryad.234.

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る