リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Legacy effects of canopy gaps on liana abundance 25 years later in a seasonal tropical evergreen forest in northeastern Thailand」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Legacy effects of canopy gaps on liana abundance 25 years later in a seasonal tropical evergreen forest in northeastern Thailand

Fujimoto, Yutaro Kanzaki, Mamoru Meunpong, Ponthep Wachrinrat, Chongrak Waengsothorn, Surachit Kitajima, Kaoru 京都大学 DOI:10.1111/btp.13218

2023.05

概要

Lianas require host trees to reach and stay in the forest canopy, but as seedlings and juveniles, they benefit from canopy gaps created by treefalls. Here, we evaluated the relative importance of these two aspects, that is, the availability of potential hosts vs. the legacy effect of past treefall gaps, on the local abundance of liana stems in a seasonal tropical evergreen forest in the Sakaerat Biosphere Reserve in northeastern Thailand. Within a 2.5-ha plot for forest dynamics monitoring, canopy height was measured in 1993 and 2018 at 5-m intervals to distinguish areas of mature (canopy height ≥ 20 m), building (10–20 m), and gap phases (< 10 m). In 2017–2018, we surveyed all liana stems ≥ 1 cm in diameter at breast height within 50 subplots (10 m × 10 m each) and recorded their diameter and the diameter of the host tree. Of a total of 445 liana individuals, 242 could be identified at least to the family level, while the others had clear morphological traits of climbing mechanisms. The number of liana stems was higher in areas that had been at the building/gap phase than those at the mature phase in 1993. When this 25-year-old legacy of past gap locations was considered, there was a positive association of local abundance between lianas and trees in areas at the mature phase in 2018. In conclusion, liana abundance reflected a long-term legacy of past treefall gaps more than 25 years earlier in this seasonal evergreen forest.

この論文で使われている画像

参考文献

Ashton, P. S. (2014). On the Forests of Tropical Asia, Lest the memory

fade. Royal Botanic Gardens, Kew and the Arnold Arboretum,

Harvard University.

Campanello, P. I., Garibaldi, J. F., Gatti, M. G., & Goldstein, G. (2007).

Lianas in a subtropical Atlantic Forest: Host preference and tree

growth. Forest Ecology and Management, 242(2–­3), 250–­259.

https://doi.org/10.1016/j.foreco.2007.01.040

DeWalt, S. J., Schnitzer, S. A., Chave, J., Bongers, F., Burnham, R. J., Cai, Z.,

Chuyong, G., Clark, D. B., Ewango, C. E. N., Gerwing, J. J., Gortaire,

E., Hart, T., Ibarra-­Manríquez, G., Ickes, K., Kenfack, D., Macía, M. J.,

Makana, J., Martínez-­Ramos, M., Mascaro, J., … Thomas, D. (2010).

Annual rainfall and seasonality predict pan-­tropical patterns of

liana density and basal area. Biotropica, 42(3), 309–­317. https://doi.

org/10.1111/j.1744-­7429.2009.00589.x

Foster, J. R., Townsend, P. A., & Zganjar, C. E. (2008). Spatial and temporal patterns of gap dominance by low-­c anopy lianas detected

using EO-­1 Hyperion and Landsat thematic mapper. Remote Sensing

of Environment, 112(5), 2104–­2117. https://doi.org/10.1016/j.

rse.2007.07.027

Fujimoto, Y., Kanzaki, M., Meunpong, P., Wachrinrat, C., Waengsothorn,

S., & Kitajima, K. (2023). Data from: Legacy effects of canopy gaps

on liana abundance 25 years later in a seasonal tropical evergreen

forest in northeastern Thailand. Dryad Digital Repository. https://

doi.org/10.5061/dryad.8sf7m​0 ct6

Gentry, A. H. (1991). The distribution and evolution of climbing plants.

In F. E. Putz & H. A. Mooney (Eds.), The biology of vines (pp. 3–­

50). Cambridge University Press. https://doi.org/10.1017/CBO97​

80511​897658.003

17447429, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13218 by Cochrane Japan, Wiley Online Library on [24/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

678 Gerwing, J. J., Schnitzer, S. A., Burnham, R. J., Bongers, F., Chave, J.,

DeWalt, S. J., Ewango, C. E. N., Foster, R., Kenfack, D., Martínez-­

Ramos, M., Parren, M., Parthasarathy, N., Pérez-­

Salicrup, D.

R., Putz, F. E., & Thomas, D. W. (2006). A standard protocol for liana censuses. Biotropica, 38(2), 256–­261. https://doi.

org/10.1111/j.1744-­7429.2006.00134.x

Kanzaki, M., Kawaguchi, H., Kiyohara, S., Kajiwara, T., Kaneko, T., Ohta,

S., Sungpalee, W., & Wachrinrat, C. (2009). Long-­term study on

the carbon storage and dynamics in a tropical seasonal evergreen forest of Thailand. In L. Puangchit & S. Diloksumpun (Eds.),

FORTROP II: Tropical forestry change in a changing world (Vol. 2,

pp. 35–­51). Royal Forest Department and Kasetsart University

Faculty of Forestry.

Kanzaki, M., Yoda, K., & Dhanmanonda, P. (1995). Mosaic structure and

tree growth pattern in a monodominant tropical seasonal evergreen forest in Thailand. In E. O. Box, R. K. Peet, T. Masuzawa, I.

Yamada, K. Fujiwara, & P. F. Maycock (Eds.), Vegetation science in

forestry (pp. 495–­513). Kluwer Academic Publishers.

Laurance, W. F., Andrade, A. S., Magrach, A., Camargo, J. L. C., Valsko,

J. J., Campbell, M., Fearnside, P. M., Edwards, W., Lovejoy, T. E., &

Laurance, S. G. (2014). Long-­term changes in liana abundance and

forest dynamics in undisturbed Amazonian forests. Ecology, 95(6),

1604–­1611. https://doi.org/10.1890/13-­1571.1

Laurentino, T. G., Baur, J., Usui, T., & Eichhorn, M. P. (2019). Liana abundance and relationships to sapling and tree hosts in an east African

primary forest. African Journal of Ecology, 57(1), 130–­136. https://

doi.org/10.1111/aje.12584

Ledo, A., & Schnitzer, S. A. (2014). Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology, 95(8), 2169–­2178. https://doi.

org/10.1890/13-­1775.1

Letcher, S. G., & Chazdon, R. L. (2009). Lianas and self-­

supporting

plants during tropical forest succession. Forest Ecology and

Management, 257(10), 2150–­2156. https://doi.org/10.1016/j.

foreco.2009.02.028

Medina-­Vega, J. A., van der Heijden, G. M. F., & Schnitzer, S. A. (2022).

Lianas decelerate tropical forest thinning during succession.

Ecology Letters, 25(6), 1432–­1441. https://doi.org/10.1111/

ele.14008

Nabe-­Nielsen, J. (2001). Diversity and distribution of lianas in a

Neotropical rain forest, Yasuní National Park, Ecuador. Journal of

Tropical Ecology, 17(1), 1–­19. https://doi.org/10.1017/S0266​46740​

1001018

Peñalosa, J. (1984). Basal branching and vegetative spread in two

tropical rain forest lianas. Biotropica, 16(1), 1–­9. https://doi.

org/10.2307/2387886

Phillips, O. L., Martínez, R. V., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S.

L., Malhi, Y., Mendoza, A. M., Neill, D., Vargas, P. N., Alexiades, M.,

Cerón, C., Di Fiore, A., Erwin, T., Jardim, A., Palacios, W., Saldias,

M., & Vinceti, B. (2002). Increasing dominance of large lianas in

Amazonian forests. Nature, 418, 770–­774. https://doi.org/10.1038/

natur​e 00926

Putz, F. E. (1983). Liana biomass and leaf area of a “tierra firme” forest in

the Rio Negro Basin, Venezuela. Biotropica, 15(3), 185–­189. https://

doi.org/10.2307/2387827

Putz, F. E. (1984). The natural history of lianas on Barro Colorado

Island, Panama. Ecology, 65(6), 1713–­1724. https://doi.

org/10.2307/1937767

R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing.

https://www.R-­proje​c t.org/

Reis, S. M., Marimon, B. S., Morandi, P. S., Elias, F., Esquivel-­Muelbert,

A., Marimon Junior, B. H., Fauset, S., de Oliveira, E. A., van der

Heijden, G. M. F., Galbraith, D., Feldpausch, T. R., & Phillips, O.

L. (2020). Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 108(6), 2184–­2197. https://doi.

org/10.1111/1365-­2745.13470

Schnitzer, S. A. (2005). A mechanistic explanation for global patterns of

liana abundance and distribution. The American Naturalist, 166(2),

262–­276. https://doi.org/10.1086/431250

Schnitzer, S. A., & Bongers, F. (2002). The ecology of lianas and their role

in forests. Trends in Ecology & Evolution, 17(5), 223–­230. https://doi.

org/10.1016/S0169​-­5347(02)02491​-­6

Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance

and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecology Letters, 14(4), 397–­4 06. https://doi.

org/10.1111/j.1461-­0248.2011.01590.x

Schnitzer, S. A., & Carson, W. P. (2001). Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82(4), 913–­

919. https://doi.org/10.1890/0012-­9658(2001)082[0913:TGATM​

O]2.0.CO;2

Schnitzer, S. A., Dalling, J. W., & Carson, W. P. (2000). The impact of lianas on tree regeneration in tropical forest canopy

gaps: Evidence for an alternative pathway of gap-­

phase regeneration. Journal of Ecology, 88(4), 655–­666. https://doi.

org/10.1046/j.1365-­2745.2000.00489.x

Schnitzer, S. A., DeFilippis, D. M., Visser, M., Estrada-­V illegas, S., Rivera-­

Camaña, R., Bernal, B., Peréz, S., Valdéz, A., Valdéz, S., Aguilar, A.,

Dalling, J. W., Broadbent, E. N., Zambrano, A. M. A., Hubbell, S. P., &

Garcia-­Leon, M. (2021). Local canopy disturbance as an explanation

for long-­term increases in liana abundance. Ecology Letters, 24(12),

2635–­2647. https://doi.org/10.1111/ele.13881

Schnitzer, S. A., Mangan, S. A., Dalling, J. W., Baldeck, C. A., Hubbell, S. P.,

Ledo, A., Muller-­L andau, H., Tobin, M. F., Aguilar, S., Brassfield, D.,

Hernandez, A., Lao, S., Perez, R., Valdes, O., & Yorke, S. R. (2012).

Liana abundance, diversity, and distribution on Barro Colorado

Island, Panama. PLoS One, 7(12), e52114. https://doi.org/10.1371/

journ​al.pone.0052114

Schnitzer, S. A., Rutishauser, S., & Aguilar, S. (2008). Supplemental protocol for liana censuses. Forest Ecology and Management, 255(3–­4),

1044–­1049. https://doi.org/10.1016/j.foreco.2007.10.012

van der Heijden, G. M. F., & Phillips, O. L. (2008). What controls liana success in Neotropical forests? Global Ecology and Biogeography, 17(3),

372–­383. https://doi.org/10.1111/j.1466-­8238.2007.00376.x

van der Heijden, G. M. F., & Phillips, O. L. (2009). Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences, 6, 2217–­2 226. https://doi.org/10.5194/

bg-­6 -­2 217-­2009

Webb, L. J. (1958). Cyclones as an ecological factor in tropical lowland

rain-­forest, North Queensland. Australian Journal of Botany, 6(3),

220–­228. https://doi.org/10.1071/BT958​0220

Wright, S. J., Calderón, O., Hernandéz, A., & Paton, S. (2004). Are

lianas increasing in importance in tropical forests? A 17-­year

record from Panama. Ecology, 85(2), 484–­4 89. https://doi.

org/10.1890/02-­0757

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Fujimoto, Y., Kanzaki, M., Meunpong,

P., Wachrinrat, C., Waengsothorn, S., & Kitajima, K. (2023).

Legacy effects of canopy gaps on liana abundance 25 years

later in a seasonal tropical evergreen forest in northeastern

Thailand. Biotropica, 55, 674–679. https://doi.org/10.1111/

btp.13218

17447429, 2023, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13218 by Cochrane Japan, Wiley Online Library on [24/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

679

FUJIMOTO et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る