リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical study on anion-doping induced metal-insulator transition of metal oxides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical study on anion-doping induced metal-insulator transition of metal oxides

倉内, 裕史 東京大学 DOI:10.15083/0002001902

2021.10.04

概要

1. Introduction
Synthesis and characterization of anion-doped transition metal oxides are an active research topic in recent years. Among changes in physical properties caused by doping, metal-insulator transition (MIT) has been attracted the interest of researchers seeking promising materials for nextgeneration electronic devices. However, not much progress has been made in the researches of MIT by anion doping because fabrication procedure of high-quality crystalline samples needed for transport-property measurements has not been established so far. Until now, indeed, MIT was observed only in a few anion-doped compounds which can be prepared as thin films. Moreover, some compounds lack structural information, hindering detailed discussion about the mechanisms.

In such a situation, theoretical calculation is a powerful tool to complement experimental observations. Recent calculation techniques based on the density functional theory enable us to predict crystal structures of solid-state materials with good accuracy. In addition, subsequent electronic-state calculations provide us valuable information to discuss the mechanisms of MIT. In this thesis work, I theoretically investigated the crystal structures and the mechanisms of MIT of three anion-doped metal oxides: H-doped SrFeO2, NdNiO2F, and Sr2RuO3F2.

2. Insulator-to-metal transition of SrFeO2 by hydrogen doping
The composition and crystal structure of H-doped SrFeO2 were theoretically determined by structural sampling and total energy calculations combined with thermodynamic analysis. It was suggested that the doped hydrogen atoms exist in hydride form (H− ) replacing lattice oxide ions. This hydride incorporation resulted in electron doping and changed the occupation state of dzx and dz 2 bands of the adjacent Fe. A certain structure with a specific hydride arrangement acquired a metallic electronic state. However, thermodynamic analysis showed that such a metallic phase is meta-stable and the other structure in which the doped electrons are localized is most stable. This result suggested that H-doped SrFeO2 is a mixture of an insulating matrix and percolating metallic domains, accounting for the experimental observation that the carrier density of H-doped SrFeO2 was much lower than the amount of doped hydrogen.

3. Metal-to-insulator transition of NdNiO3 by fluorine doping
The crystal structure of the F-doped NdNiO3 (NdNiO2F) was determined by exhaustive structure sampling. It was found that the fluorine atoms favor a two-dimensional cis-type configuration. The structure optimization including epitaxial strain and subsequent electronic state calculation reproduced both the experimental out-of-plane lattice constant and the insulating state of NdNiO2F. The detailed analysis using density of states (DOS) for 3d electrons showed that the Ni2+ ion in NdNiO2F has eg ↑↑ d-electron configuration. This configuration has a strong tendency to form insulating band structures because strong Coulomb repulsion precludes electron hopping through the eg ↑↑ array. In contrast, Ni3+ in NdNiO3 has eg ↑ configuration which allows electronic conduction. Therefore, I concluded that the change in occupation state of the eg orbitals by fluorine doping is the trigger of MIT.

4. Metal-to-insulator transition of Sr2RuO4 by fluorine doping.
The experimental lattice constants and the insulating state of Sr2RuO3F2 were theoretically reproduced by assuming the same structure as Sr2TiO3F2. The DOS calculation for Sr2RuO4 and Sr2RuO3F2 revealed that the d electron configuration of Ru4+ (d 4 ) changed from (xy, yz, zx) 4 to (xy) ↑ (yz, zx) ↑↑(3z 2−r 2 ) ↑ by fluorination. Accordingly, occupation number per band also changed from noninteger 4/3 to integer 1, resulting in the metal-insulator transition. The occupation of the 3z 2−r 2 orbital in Sr2RuO3F2 was attributed to the change in crystal field around Ru. Sr2RuO4 has almost regular RuO6 octahedra and well separated t2g and eg orbitals. As a result, all the four d electrons occupy the lower t2g band. On the other hand, Sr2RuO3F2 has RuO5F octahedra with long Ru−F bonds and the resulting square pyramidal crystal field stabilizes the 3z 2−r 2 orbital.

5. Conclusion
In my thesis work, I studied metal-insulator transitions induced by anion doping by theoretical calculations. The calculation of H-doped SrFeO2 revealed that the doped hydrogen exists as hydride, and the experimental carrier density could be explained by a two-component model with different electron trapping characters. In case of NdNiO2F, I found the change in occupation state of eg orbitals triggers MIT. The last investigation of the redox-neutral transition between Sr2Ru4+O4 and Sr2Ru4+O3F2 demonstrated that the transitions is caused by modification of crystal field associated with anion substitution. These new knowledges of metal-insulator transitions would provide a new perspective to design functional anion-doped compounds in further researches.

この論文で使われている画像

参考文献

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[2] M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B. Brookes, X. Liu, Y. J. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli, I. Božović, and J. P. Hill, Nat. Mater. 12, 1019 (2013).

[3] A. S. Bhalla, R. Guo, and R. Roy, Mater. Res. Innov. 4, 3 (2000).

[4] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

[5] H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, and K. R. Poeppelmeier, Nat. Commun. 9, 772 (2018).

[6] Y. Kobayashi, Y. Tsujimoto, and H. Kageyama, Annu. Rev. Mater. Res. 48, 303 (2018).

[7] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).

[8] A. Janotti and C. G. Van De Walle, Nat. Mater. 6, 44 (2007).

[9] M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, Science 295, 1882 (2002).

[10] T. Sakaguchi, Y. Kobayashi, T. Yajima, M. Ohkura, C. Tassel, F. Takeiri, S. Mitsuoka, H. Ohkubo, T. Yamamoto, J. Kim, N. Tsuji, A. Fujihara, Y. Matsushita, J. Hester, M. Avdeev, K. Ohoyama, and H. Kageyama, Inorg. Chem. 51, 11371 (2012).

[11] Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, Nat. Mater. 11, 507 (2012).

[12] T. Yamamoto, R. Yoshii, G. Bouilly, Y. Kobayashi, K. Fujita, Y. Kususe, Y. Matsushita, K. Tanaka, and H. Kageyama, Inorg. Chem. 54, 1501 (2015).

[13] F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, and M. a Hayward, Angew. Chemie Int. Ed. 53, 7556 (2014).

[14] R. M. Helps, N. H. Rees, and M. A. Hayward, Inorg. Chem. 49, 11062 (2010).

[15] R. Sato, H. Saitoh, N. Endo, S. Takagi, M. Matsuo, K. Aoki, and S. Orimo, Appl. Phys. Lett. 102, 091901 (2013).

[16] S. Ayukawa, K. Ikeda, M. Kato, T. Noji, S. Orimo, and Y. Koike, J. Phys. Soc. Japan 81, 034704 (2012).

[17] C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Angew. Chemie 126, 10545 (2014).

[18] Y. Goto, C. Tassel, Y. Noda, O. Hernandez, C. J. Pickard, M. A. Green, H. Sakaebe, N. Taguchi, Y. Uchimoto, Y. Kobayashi, and H. Kageyama, Inorg. Chem. 56, 4840 (2017).

[19] C. Tassel, Y. Goto, D. Watabe, Y. Tang, H. Lu, Y. Kuno, F. Takeiri, T. Yamamoto, C. M. Brown, J. Hester, Y. Kobayashi, and H. Kageyama, Angew. Chemie 128, 9819 (2016).

[20] T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, J. Am. Chem. Soc. 134, 8782 (2012).

[21] T. Katayama, A. Chikamatsu, K. Yamada, K. Shigematsu, T. Onozuka, M. Minohara, H. Kumigashira, E. Ikenaga, and T. Hasegawa, J. Appl. Phys. 120, 085305 (2016).

[22] J. Bang, S. Matsuishi, H. Hiraka, F. Fujisaki, T. Otomo, S. Maki, J. Yamaura, R. Kumai, Y. Murakami, and H. Hosono, J. Am. Chem. Soc. 136, 7221 (2014).

[23] T. Katayama, A. Chikamatsu, Y. Hirose, H. Kumigashira, T. Fukumura, and T. Hasegawa, J. Phys. D. Appl. Phys. 47, 135304 (2014).

[24] T. Katayama, A. Chikamatsu, H. Kamisaka, Y. Yokoyama, Y. Hirata, H. Wadati, T. Fukumura, and T. Hasegawa, AIP Adv. 5, 107147 (2015).

[25] F. Galasso and W. Darby, J. Phys. Chem. 66, 1318 (1962).

[26] B. L. Chamberland, Mater. Res. Bull. 6, 311 (1971).

[27] P. R. Slater, J. Fluor. Chem. 117, 43 (2002).

[28] Y. Wang, K. Tang, B. Zhu, D. Wang, Q. Hao, and Y. Wang, Mater. Res. Bull. 65, 42 (2015).

[29] G. S. Case, A. L. Hector, W. Levason, R. L. Needs, M. F. Thomas, and M. T. Weller, J. Mater. Chem. 9, 2821 (1999).

[30] Y. Su, Y. Tsujimoto, Y. Matsushita, Y. Yuan, J. He, and K. Yamaura, Inorg. Chem. 55, 2627 (2016).

[31] Y. Tsujimoto, Y. Matsushita, N. Hayashi, K. Yamaura, and T. Uchikoshi, Cryst. Growth Des. 14, 4278 (2014).

[32] Y. Tsujimoto, J. J. Li, K. Yamaura, Y. Matsushita, Y. Katsuya, M. Tanaka, Y. Shirako, M. Akaogi, and E. Takayama-Muromachi, Chem. Commun. 47, 3263 (2011).

[33] Y. Tsujimoto, K. Yamaura, and T. Uchikoshi, Inorg. Chem. 52, 10211 (2013).

[34] P. R. Slater and R. K. B. Gover, J. Mater. Chem. 12, 291 (2002).

[35] K. Wissel, J. Heldt, P. B. Groszewicz, S. Dasgupta, H. Breitzke, M. Donzelli, A. I. Waidha, A. D. Fortes, J. Rohrer, P. R. Slater, G. Buntkowsky, and O. Clemens, Inorg. Chem. 57, 6549 (2018).

[36] P. R. Slater and R. K. B. Gover, J. Mater. Chem. 11, 2035 (2001).

[37] M. AI-Mamouri, P. P. Edwards, C. Greaves, and M. Slaski, Nature 369, 382 (1994).

[38] L. D. Aikens, R. K. Li, and C. Greaves, Chem. Commun. 2129 (2000).

[39] K. Kawahara, A. Chikamatsu, T. Katayama, T. Onozuka, D. Ogawa, K. Morikawa, E. Ikenaga, Y. Hirose, I. Harayama, D. Sekiba, T. Fukumura, and T. Hasegawa, CrystEngComm 19, 313 (2017).

[40] O. Clemens, F. J. Berry, A. J. Wright, K. S. Knight, J. M. Perez-Mato, J. M. Igartua, and P. R. Slater, J. Solid State Chem. 206, 158 (2013).

[41] C. M. Thompson, C. K. Blakely, R. Flacau, J. E. Greedan, and V. V. Poltavets, J. Solid State Chem. 219, 173 (2014).

[42] C. M. Thompson, C. K. Blakely, R. Flacau, J. E. Greedan, and V. V. Poltavets, J. Solid State Chem. 226, 332 (2015).

[43] O. Clemens, F. J. Berry, A. J. Wright, K. S. Knight, J. M. Perez-Mato, J. M. Igartua, and P. R. Slater, J. Solid State Chem. 226, 326 (2015).

[44] R. L. Needs and M. T. Weller, J. Solid State Chem. 139, 422 (1998).

[45] T. Katsumata, M. Nakashima, H. Umemoto, and Y. Inaguma, J. Solid State Chem. 181, 2637 (2008).

[46] M. V. Lobanov, A. M. Abakumov, A. V. Sidorova, M. G. Rozova, O. G. D’yachenko, E. V. Antipov, J. Hadermann, and G. Van Tendeloo, Solid State Sci. 4, 19 (2002).

[47] T. Katsumata, M. Nakashima, Y. Inaguma, and T. Tsurui, Bull. Chem. Soc. Jpn. 85, 397 (2012).

[48] F. J. Berry, X. Ren, R. Heap, P. Slater, and M. F. Thomas, Solid State Commun. 134, 621 (2005).

[49] R. Heap, P. R. Slater, F. J. Berry, O. Helgason, and A. J. Wright, Solid State Commun. 141, 467 (2007).

[50] F. J. Berry, R. Heap, Ö. Helgason, E. A. Moore, S. Shim, P. R. Slater, and M. F. Thomas, J. Phys. Condens. Matter 20, (2008).

[51] O. Clemens, M. Kuhn, and R. Haberkorn, J. Solid State Chem. 184, 2870 (2011).

[52] F. J. Berry, F. C. Coomer, C. Hancock, Ö. Helgason, E. A. Moore, P. R. Slater, A. J. Wright, and M. F. Thomas, J. Solid State Chem. 184, 1361 (2011).

[53] C. K. Blakely, J. D. Davis, S. R. Bruno, S. K. Kraemer, M. Zhu, X. Ke, W. Bi, E. E. Alp, and V. V. Poltavets, J. Fluor. Chem. 159, 8 (2014).

[54] E. J. Moon, Y. Xie, E. D. Laird, D. J. Keavney, C. Y. Li, and S. J. May, J. Am. Chem. Soc. 136, 2224 (2014).

[55] T. Katayama, A. Chikamatsu, Y. Hirose, R. Takagi, H. Kamisaka, T. Fukumura, and T. Hasegawa, J. Mater. Chem. C 2, 5350 (2014).

[56] T. Katayama, A. Chikamatsu, H. Kamisaka, H. Kumigashira, and T. Hasegawa, Appl. Phys. Express 9, 025801 (2016).

[57] Y. Inaguma, J. M. Greneche, M. P. Crosnier-Lopez, T. Katsumata, Y. Calage, and J. L. Fourquet, Chem. Mater. 17, 1386 (2005).

[58] F. Takeiri, T. Yamamoto, N. Hayashi, S. Hosokawa, K. Arai, J. Kikkawa, K. Ikeda, T. Honda, T. Otomo, C. Tassel, K. Kimoto, and H. Kageyama, Inorg. Chem. 57, 6686 (2018).

[59] T. Onozuka, A. Chikamatsu, T. Katayama, Y. Hirose, I. Harayama, D. Sekiba, E. Ikenaga, M. Minohara, H. Kumigashira, and T. Hasegawa, ACS Appl. Mater. Interfaces 9, 10882 (2017).

[60] W. Rüdorff and D. Krug, Zeitschrift Für Anorg. Und Allg. Chemie 329, 211 (1964).

[61] L. Cario, C. Vaju, B. Corraze, V. Guiot, and E. Janod, Adv. Mater. 22, 5193 (2010).

[62] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, M. A. G. Aranda, and M. T. Fernández-Díaz, J. Am. Chem. Soc. 121, 4754 (1999).

[63] A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, and M. T. Fernández-Díaz, J. Solid State Chem. 182, 1982 (2009).

[64] J. A. Alonso, M. J. Martínez-Lope, I. A. Presniakov, A. V. Sobolev, V. S. Rusakov, A. M. Gapochka, G. Demazeau, and M. T. Fernández-Díaz, Phys. Rev. B 87, 184111 (2013).

[65] M. L. Medarde, J. Phys. Condens. Matter 9, 1679 (1997).

[66] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, M. T. Fernández-Díaz, and M. A. G. Aranda, Phys. Rev. B 64, 094102 (2001).

[67] J. Alonso, M. Martínez-Lope, M. Casais, and J. García-Muñoz, Phys. Rev. B 61, 1756 (2000).

[68] J. A. Alonso, M. J. Martı́nez-Lope, and I. Rasines, J. Solid State Chem. 120, 170 (1995).

[69] J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C. Niedermayer, Phys. Rev. B 45, 8209 (1992).

[70] S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000).

[71] V. I. Anisimov, I. A. Nekrasov, D. E. Kondakov, T. M. Rice, and M. Sigrist, Eur. Phys. J. B 25, 191 (2002).

[72] P. Steffens, O. Friedt, P. Alireza, W. G. Marshall, W. Schmidt, F. Nakamura, S. Nakatsuji, Y. Maeno, R. Lengsdorf, M. M. Abd-Elmeguid, and M. Braden, Phys. Rev. B 72, 094104 (2005).

[73] Y. Wei, H. Gui, X. Li, Z. Zhao, Y.-H. Zhao, and W. Xie, J. Phys. Condens. Matter 27, 206001 (2015).

[74] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2008).

[75] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[76] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[77] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[78] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

[79] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

[80] M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).

[81] J. F. Janak, Phys. Rev. B 18, 7165 (1978).

[82] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[83] H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).

[84] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

[85] S. Dudarev and G. Botton, Phys. Rev. B 57, 1505 (1998).

[86] G. Kresse, Phys. Rev. B 59, 1758 (1999).

[87] T. Yamamoto and H. Kageyama, Chem. Lett. 42, 946 (2013).

[88] J. Zhang, G. Gou, and B. Pan, J. Phys. Chem. C 118, 17254 (2014).

[89] A. B. Bridges, G. R. Darling, M. A. Hayward, and M. J. Rosseinsky, J. Am. Chem. Soc. 127, 5996 (2005).

[90] K. Liu, Y. Hou, X. Gong, and H. Xiang, Sci. Rep. 6, 19653 (2016).

[91] Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, and W. Paulus, Nature 450, 1062 (2007).

[92] G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

[93] H. Xiang, S.-H. Wei, and M.-H. Whangbo, Phys. Rev. Lett. 100, 167207 (2008).

[94] J. Pruneda, J. Íñiguez, E. Canadell, H. Kageyama, and M. Takano, Phys. Rev. B 78, 115101 (2008).

[95] A. D. Franklin and R. B. Campbell, J. Phys. Chem. 59, 65 (1955).

[96] Y. Kobayashi, Z. Li, K. Hirai, C. Tassel, F. Loyer, N. Ichikawa, N. Abe, T. Yamamoto, Y. Shimakawa, K. Yoshimura, M. Takano, O. J. Hernandez, and H. Kageyama, J. Solid State Chem. 207, 190 (2013).

[97] M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999).

[98] M. A. Hayward and M. J. Rosseinsky, Chem. Mater. 12, 2182 (2000).

[99] B. Li, J. Woods, J. Siewenie, H.-Y. Hah, J. A. Johnson, C. E. Johnson, and D. Louca, Chem. Commun. 52, 2386 (2016).

[100] Y. Zhou, S. Middey, J. Jiang, N. Chen, L. Chen, X. Shi, M. Döbeli, J. Shi, J. Chakhalian, and S. Ramanathan, Appl. Phys. Lett. 107, 031905 (2015).

[101] J. Shi, Y. Zhou, and S. Ramanathan, Nat. Commun. 5, 1 (2014).

[102] J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).

[103] S. Yamamoto and T. Fujiwara, J. Phys. Soc. Japan 71, 1226 (2002).

[104] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

[105] Y. Maeno, S. Nakatsuji, and S. Ikeda, Mater. Sci. Eng. B 63, 70 (1999).

[106] T. T. Tran, T. Mizokawa, S. Nakatsuji, H. Fukazawa, and Y. Maeno, Phys. Rev. B 70, 153106 (2004).

[107] S. Ryee, S. W. Jang, H. Kino, T. Kotani, and M. J. Han, Phys. Rev. B 93, 075125 (2016).

[108] Z. V. Pchelkina, I. A. Nekrasov, T. Pruschke, S. Suga, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 77, 046102 (2008).

[109] Q. Huang, J. L. Soubeyroux, O. Chmaissem, I. N. Sora, A. Santoro, R. J. Cava, J. J. Krajewski, and W. F. Peck, J. Solid State Chem. 112, 355 (1994).

[110] T. Oguchi, Phys. Rev. B 51, 1385 (1995).

[111] M. Braden, G. André, S. Nakatsuji, and Y. Maeno, Phys. Rev. B 58, 847 (1998).

[112] A. Kanbayasi, J. Phys. Soc. Japan 41, 1876 (1976).

[113] W. D. Ryden and A. W. Lawson, J. Chem. Phys. 52, 6058 (1970).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る