リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Angle-resolved photoemission spectroscopy studies of electronic structure and its relationship to transport properties of iron-based superconductors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Angle-resolved photoemission spectroscopy studies of electronic structure and its relationship to transport properties of iron-based superconductors

輿石, 佳佑 東京大学 DOI:10.15083/0002001850

2021.10.04

概要

Since superconductivity in Fe-based compounds was discovered in 2008, many efforts have been made to understand the mechanism of the unconventional super- conductivity. Iron-based superconductors (FeSCs) are mainly classified into six cat- egories according to their structures. One of them is the “122”-type FeSCs, which have been studied most extensively. In addition, ”11”-type FeSCs are also one of the most extensively studied FeSCs because of their simple crystal structures and the absence of antiferromagnetic order. So far, in these compounds, these phenom- ena have been found and to investigate their origins and the relationship between the non-trivial phenomena and superconductivity is one of the main issues in order to understand the mechanism of the unconventional superconductivity in FeSCs. In the present thesis, we have studied the electronic structures of both classes of FeSCs, the ”122”- and ”11”-type FeSCs, by photoemission spectroscopy in order to clarify their electronic states and relationship to the non-trivial transport properties.

Photoemission spectroscopy is the most powerful technique, which allows us to directly investigate the electron states in the strongly correlated materials. In this thesis, we have investigated the electronic structures of FeSCs by angle-resolved photoemission spectroscopy (ARPES), resonant photoemission spectroscopy (RPES), and X-ray photoemission spectroscopy (XPS).

It is known that Cr substitution in the 122-type BaFe2As2 does not induce su- perconductivity in spite of the fact that, according to the rigid-band model, the Cr substitution corresponds to hole doping as in the case of Mn doping, in contrast to K doping. Its electronic structure has not been studied and the origin of the absence of the superconductivity is still unclear. Furthermore, the Cr-doped Ba122 shows sign change of the in-plane resistivity anisotropy with Cr content. The mechanism of the non-trivial sign change of the in-plane resistivity anisotropy is also uncertain.

In Chapter 3, Ba(Fe0.81Cr0.19)2As2 has been studied by RPES in order to investi-gate the electronic structure of Cr 3d electrons. Since RPES is as element-specific measurement, RPES is very useful to investigate the doped Cr 3d states. The Fermi edge has been observed in the Cr 3d PDOS and the Cr 3d electrons has itinerant features. Therefore, Ba(Fe0.81Cr0.19)2As2 is considered to be an effectively hole- doped system. However, the Cr 3d PDOS is mainly located at ∼1 eV below EF , indicating the localization of the Cr 3d electrons. Then the high-spin state at the Cr site is realized by the on-site Coulomb interaction and Hund’s coupling. In Chap- ter 4, we have studied the electronic structure of Ba(Fe1-xCrx)2As2 with varied Cr concentration (x= 0.06, 0.09, and x=0.19) by ARPES in order to investigate the Fe 3d band affected by the Cr substitution and its relationship to the sign change of the in-plane resistivity anisotropy. Upon Cr substitution, Fermi level moves downward exhibiting upward band dispersion shift without significant changes of dispersion, indicating sufficient hole doping with the Cr substitution. Moreover, the Fermi sur- face topology changes from that of the parent compound. We concluded that the changes of the Fermi surface topology play an important role in the sign reversal of the in-plane resistivity anisotropy.

For ”11”-type FeSCs, FeTe1-xSex have been studied. It is well established that as-grown FeTe1-xSex does not exhibit superconductivity due to interstitial Fe atoms. After annealing, the excess Fe atoms are removed and the superconductivity recov- ers. Interestingly, depending on the Se content, annealed samples show dramatically different temperature dependence of the Hall coefficient. Especially, in this study, the samples were annealed in Te vaper in order to remove the excess Fe atoms com- pletely.

In chapter 5, we have studied the doping-evolution of the electronic structure in Te-annealed FeTe1-xSex (x=0.15, 0.2, 0.3, and 0.4) at low temperature by ARPES in order to clarify the electronic states of FeTe1-xSex, in which the excess Fe atoms are completely removed. Upon increasing Se content, the γ band shifts downward and induces disappearance of the outer large hole pockets around the Γ point. We concluded that the changes of the Fermi topology and mass renormalization play an important role in the sign reversal of the Hall coefficient. In chapter 6, the tem- perature dependence of the electronic states of Te-annealed FeTe1-xSex (x=0.2 and 0.4) has been studied by ARPES in order to investigate the relationship between the electronic structure and the non-trivial magneto-transport properties. Upon in- creasing temperature, the coherent peak of the electron band around the zone corner weakens and disappears above 100 K in the optimally-doped compound in contrast to the temperature independent behavior of it for Se-underdoped compound, indi- cating the disappearance of the electron pockets. Moreover, the possible changes of the Fermi surface topology predicted from present results can explain the tempera- ture dependence of the Hall coefficient.

この論文で使われている画像

参考文献

[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

[2] J. Paglione and R. Greene, Nat. Phys. 6, 645 (2010).

[3] M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. B 78, 020503 (2008).

[4] A. Rahman and A. Hossen, Am. Sci. Res. J. Eng. Technol. Sci. 11, 104 (2015).

[5] X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H. Wen, Phys. Rev. B 79, 220512 (2009).

[6] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008).

[7] F. Ye, S. Chi, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D. Wang, C. H. Dong, and M. Fang, Phys. Rev. Lett. 107, 137003 (2011).

[8] H. Ghosh and S. Sen, arXiv 1408.3244 (2014).

[9] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Scha¨fer, Phys. Rev. Lett. 437, 1892 (1979).

[10] P. Shirage, K. Miyazawa, M. Ishikado, K. Kihou, C. Lee, N. Takeshita, H. Matsuhata, R. Kumai, Y. Tomioka, T. Ito, H. Kito, H. Eisaki, S. Shamoto, and a. Iyo, Phys. C Supercond. 469, 355 (2009).

[11] Q. Huang, Y. Qiu, W. Bao, M. a. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett. 101, 257003 (2008).

[12] K. A. Filsinger, W. Schnelle, P. Adler, G. H. Fecher, M. Reehuis, A. Hoser, J.-U. Hoffmann, P. Werner, M. Greenblatt, and C. Felser, Phys. Rev. B 95, 184414 (2017).

[13] A. E. Bohmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann, P. Schweiss, T. Wolf, and C. Meingast, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 1 (2013).

[14] W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).

[15] S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y.-l. Huang, F.-c. Hsu, K.-w. Yeh, M.-k. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).

[16] A. Jesche, N. Caroca-Canales, H. Rosner, H. Borrmann, A. Ormeci, D. Kasi- nathan, H. H. Klauss, H. Luetkens, R. Khasanov, A. Amato, A. Hoser, K. Kaneko, C. Krellner, and C. Geibel, Phys. Rev. B 78, 180504 (2008).

[17] a. Martinelli, a. Palenzona, M. Tropeano, C. Ferdeghini, M. Putti, M. R. Cim- berle, T. D. Nguyen, M. Affronte, and C. Ritter, Phys. Rev. B 81, 1 (2010).

[18] A. S. Sefat, D. Singh, and L. VanBebber, Phys. Rev. B 79, 224524 (2009).

[19] H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klin- geler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schu- mann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Bu¨chner, Nat. Mater. 8, 305 (2009).

[20] C. R. Rotundu, D. T. Keane, B. Freelon, S. D. Wilson, A. Kim, P. N. Valdivia, E. Bourret-Courchesne, and R. J. Birgeneau, Phys. Rev. B 80, 144517 (2009).

[21] J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. 7, 953 (2008).

[22] S. Ishida, M. Nakajima, T. Liang, K. Kihou, C. H. Lee, a. Iyo, H. Eisaki, T. Kakeshita, Y. Tomioka, T. Ito, and S. Uchida, Phys. Rev. Lett. 110, 207001 (2013).

[23] F. Rullier-Albenque, D. Colson, a. Forget, P. Thue´ry, and S. Poissonnet, Phys. Rev. B 81, 224503 (2010).

[24] S. Nandi, M. Kim, A. Kreyssig, and R. Fernandes, Phys. Rev. Lett. 104, 057006 (2010).

[25] N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T. J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J. M. Tranquada, J. Phys. Soc. Jpn. 79, 1 (2010).

[26] A. N. Lavrov, H. J. Kang, Y. Kurita, T. Suzuki, S. Komiya, J. W. Lynn, S.-H. Lee, P. Dai, and Y. Ando, Phys. Rev. Lett. 92, 227003 (2004).

[27] D. J. Singh, Phys. Rev. B 78, 094511 (2008).

[28] M. Yi, D. Lu, and J. Chu, Proc. Natl. Acad. Sci. U. S. A. 108, 6878 (2011).

[29] L. Liu, T. Mikami, S. Ishida, K. Koshiishi, K. Okazaki, T. Yoshida, H. Suzuki, M. Horio, L. C. C. Ambolode, J. Xu, H. Kumigashira, K. Ono, M. Nakajima, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, S. Uchida, and A. Fuji- mori, Phys. Rev. B 92, 094503 (2015).

[30] T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S.-i. Uchida, H. Harima, and S. Uji, Phys. Rev. Lett. 107, 176402 (2011).

[31] M. Yi, D. Lu, J. Analytis, J.-H. Chu, and S.-K. Mo, Phys. Rev. B 80, 174510 (2009).

[32] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).

[33] D. C. Johnston, Adv. Phys. 59, 803 (2010).

[34] T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, Phys. Rev. Lett. 106, 187001 (2011).

[35] X. Liu et al., Nat. Commun. 5, 5047 (2014).

[36] L. Zhao et al., Nat. Commun. 7, 10608 (2016).

[37] J. Chu, J. Analytis, K. D. Greve, and P. McMahon, Science (80-. ). 329, 824 (2010).

[38] E. C. Blomberg, M. a. Tanatar, R. M. Fernandes, I. I. Mazin, B. Shen, H.-H. Wen, M. D. Johannes, J. Schmalian, and R. Prozorov, Nat. Commun. 4, 1914 (2013).

[39] K. Sugimoto, P. Prelovsek, E. Kaneshita, and T. Tohyama, Phys. Rev. B 90, 3 (2014).

[40] B. Valenzuela, E. Bascones, and M. J. Caldero´n, Phys. Rev. Lett. 105, 207202 (2010).

[41] E. C. Blomberg, M. A. Tanatar, R. M. Fernandes, I. I. Mazin, B. Shen, H.-h. Wen, M. D. Johannes, J. Schmalian, and R. Prozorov, Nat. Commun. 4, 1914 (2013).

[42] K. Sugimoto, E. Kaneshita, and T. Tohyama, Phys. C Supercond. 471, 666 (2011).

[43] A. Thaler, H. Hodovanets, M. S. Torikachvili, S. Ran, A. Kracher, W. Straszheim, J. Q. Yan, E. Mun, and P. C. Canfield, Phys. Rev. B 84, 144528 (2011).

[44] K. Marty, A. D. Christianson, C. H. Wang, M. Matsuda, H. Cao, L. H. Van- Bebber, J. L. Zarestky, D. J. Singh, A. S. Sefat, and M. D. Lumsden, Phys. Rev. B 83, 060509 (2011).

[45] M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, J. L. Zarestky, M. A. Green, S. L. Bud’ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, Phys. Rev. B 82, 220503 (2010).

[46] K. Ohgushi and Y. Kiuchi, Phys. Rev. B 85, 064522 (2012).

[47] T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima, J. Phys. Soc. Jpn. 84, 094707 (2015).

[48] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).

[49] N. Ni, A. Thaler, J. Yan, and A. Kracher, Phys. Rev. B 82, 024519 (2010).

[50] M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

[51] Y. Sun, T. Yamada, S. Pyon, and T. Tamegai, Sci. Rep. 6, 32290 (2016).

[52] Y. Koshika, T. Usui, S. Adachi, T. Watanabe, K. Sakano, S. Simayi, and M. Yoshizawa, J. Phys. Soc. Jpn. 82, 023703 (2013).

[53] T. Otsuka, S. Hagisawa, S. Adachi, T. Usui, T. Watanabe, Y. Nakanishi, M. Yoshizawa, and S. Kimura, , JPS autumn meeting, (2016).

[54] M. Imaizumi, T. Noji, T. Adachi, and Y. Koike, 471, 614 (2011).

[55] Y. Sun, T. Taen, T. Yamada, S. Pyon, T. Nishizaki, Z. Shi, and T. Tamegai, Phys. Rev. B 89, 144512 (2014).

[56] Y. Sun, Y. Tsuchiya, T. Taen, T. Yamada, S. Pyon, A. Sugimoto, T. Ekino, Z. Shi, and T. Tamegai, Sci. Rep. 4, 4585 (2015).

[57] Y. Sun, T. Taen, T. Yamada, Y. Tsuchiya, S. Pyon, and T. Tamegai, Supercond. Sci. Technol. 28, 044002 (2015).

[58] Y. Zhang, C. He, Z. R. Ye, J. Jiang, F. Chen, M. Xu, Q. Q. Ge, B. P. Xie, J. Wei, M. Aeschlimann, X. Y. Cui, M. Shi, J. P. Hu, and D. L. Feng, Phys. Rev. B 85, 085121 (2012).

[59] H. Suzuki, T. Yoshida, S. Ideta, G. Shibata, K. Ishigami, T. Kadono, a. Fuji- mori, M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, E. Sakai, H. Kumigashira, M. Matsuo, and T. Sasagawa, Phys. Rev. B 88, 100501 (2013).

[60] P. Richard, A. van Roekeghem, B. Q. Lv, T. Qian, T. K. Kim, M. Hoesch, J.-P. Hu, A. S. Sefat, S. Biermann, and H. Ding, Phys. Rev. B 95, 184516 (2017).

[61] J. Nayak, K. Filsinger, G. H. Fecher, S. Chadov, J. Mina´r, E. D. L. Rienks, B. Bu¨chner, S. P. Parkin, J. Fink, and C. Felser, Proc. Natl. Acad. Sci. 114, 201702234 (2017).

[62] M. Nakajima, S. Ishida, K. Kihou, Y. Tomioka, T. Ito, Y. Yoshida, C. H. Lee, H. Kito, A. Iyo, H. Eisaki, K. M. Kojima, and S. Uchida, Phys. Rev. B 81, 104528 (2010).

[63] K. D. Kwon, K. Refson, S. Bone, R. Qiao, W.-l. Yang, Z. Liu, and G. Sposito, Phys. Rev. B 83, 064402 (2011).

[64] G. Levy, R. Sutarto, D. Chevrier, T. Regier, R. Blyth, J. Geck, S. Wurmehl, L. Harnagea, H. Wadati, T. Mizokawa, I. S. Elfimov, A. Damascelli, and G. a. Sawatzky, Phys. Rev. Lett. 109, 077001 (2012).

[65] M. A. Tomaz, W. J. Antel, W. L. O’Brien, and G. R. Harp, Phys. Rev. B 55, 3716 (1997).

[66] C. Theil, J. van Elp, and F. Folkmann, Phys. Rev. B 59, 7931 (1999).

[67] M. Kobayashi, Y. Ishida, J. I. Hwang, G. S. Song, A. Fujimori, C. S. Yang, L. Lee, H.-J. Lin, D. J. Huang, C. T. Chen, Y. Takeda, K. Terai, S.-I. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, K. Kobayashi, A. Tanaka, H. Saito, and K. Ando, New J. Phys. 10, 055011 (2008).

[68] U. Fano, Phys. Rev. 124, 1866 (1961).

[69] H. Suzuki, T. Yoshida, S. Ideta, G. Shibata, and K. Ishigami, 1 (2013).

[70] W. Malaeb, T. Yoshida, T. Kataoka, A. Fujimori, M. Kubota, K. Ono, H. Usui, K. Kuroki, R. Arita, H. Aoki, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. 77, 093714 (2008).

[71] V. I. Anisimov, D. M. Korotin, M. A. Korotin, A. V. Kozhevnikov, J. Kunesˇ, A. O. Shorikov, S. L. Skornyakov, and S. V. Streltsov, J. Phys. Condens. Matter 21, 075602 (2009).

[72] T. Miyake, K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 79, 044705 (2010).

[73] S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Phys. Rev. B 81, 184519 (2010).

[74] T. Urata, Y. Tanabe, K. K. Huynh, H. Oguro, K. Watanabe, S. Heguri, and K. Tanigaki, 024503, 1 (2013).

[75] I. R. Fisher, L. Degiorgi, and Z. X. Shen, Reports Prog. Phys. 74, 124506 (2011).

[76] S. Ishida, T. Liang, M. Nakajima, K. Kihou, and C. Lee, Phys. Rev. B 84, 184514 (2011).

[77] S. Ishida, M. Nakajima, T. Liang, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, Y. Tomioka, T. Ito, and S.-i. Uchida, J. Am. Chem. Soc. 135, 3158 (2013).

[78] J. J. Ying, X. F. Wang, T. Wu, Z. J. Xiang, R. H. Liu, Y. J. Yan, a. F. Wang, M. Zhang, G. J. Ye, P. Cheng, J. P. Hu, and X. H. Chen, Phys. Rev. Lett. 107, 1 (2011).

[79] Z. K. Liu, M. Yi, Y. Zhang, J. Hu, R. Yu, J.-X. Zhu, R.-H. He, Y. L. Chen, M. Hashimoto, R. G. Moore, S.-K. Mo, Z. Hussain, Q. Si, Z. Q. Mao, D. H. Lu, and Z.-X. Shen, Phys. Rev. B 92, 235138 (2015).

[80] T. Yoshida, I. Nishi, S. Ideta, a. Fujimori, M. Kubota, K. Ono, S. Kasahara, T. Shibauchi, T. Terashima, Y. Matsuda, H. Ikeda, and R. Arita, Phys. Rev. Lett. 106, 117001 (2011).

[81] R. P. Vasquez, J. Electron Spectros. Relat. Phenomena 56, 217 (1991).

[82] T. Terashima, N. Kurita, M. Kimata, M. Tomita, S. Tsuchiya, M. Imai, A. Sato, K. Kihou, C.-H. Lee, H. Kito, H. Eisaki, A. Iyo, T. Saito, H. Fukazawa, Y. Kohori, H. Harima, and S. Uji, Phys. Rev. B 87, 224512 (2013).

[83] T. Morinari, E. Kaneshita, and T. Tohyama, Phys. Rev. Lett. 105, 1 (2010).

[84] S. Li, C. de la Cruz, Q. Huang, G. F. Chen, T.-L. Xia, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 80, 020504 (2009).

[85] M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008).

[86] B. C. Sales, A. S. Sefat, M. A. Mcguire, R. Y. Jin, D. Mandrus, and Y. Mozharivskyj, 1 (2009).

[87] C. Dong, H. Wang, Z. Li, J. Chen, H. Q. Yuan, and M. Fang, Phys. Rev. B 84, 224506 (2011).

[88] Y. Sun, T. Taen, Y. Tsuchiya, Z. X. Shi, and T. Tamegai, Supercond. Sci. Technol. 26, 015015 (2013).

[89] F. Chen, B. Zhou, Y. Zhang, J. Wei, H.-w. Ou, J.-f. Zhao, C. He, Q.-q. Ge, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Z.-y. Lu, J. Hu, X.-y. Cui, and D. L. Feng, Phys. Rev. B 81, 014526 (2010).

[90] E. Ieki, K. Nakayama, Y. Miyata, T. Sato, H. Miao, N. Xu, X.-P. Wang, P. Zhang, T. Qian, P. Richard, Z.-J. Xu, J. S. Wen, G. D. Gu, H. Q. Luo, H.-H. Wen, H. Ding, and T. Takahashi, Phys. Rev. B 89, 140506 (2014).

[91] L. C. C. Ambolode, K. Okazaki, M. Horio, H. Suzuki, L. Liu, S. Ideta, T. Yoshida, T. Mikami, T. Kakeshita, S. Uchida, K. Ono, H. Kumigashira, M. Hashimoto, D.-H. Lu, Z.-X. Shen, and A. Fujimori, Phys. Rev. B 92, 035104 (2015).

[92] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).

[93] I. Tsukada, M. Hanawa, S. Komiya, T. Akiike, R. Tanaka, Y. Imai, and A. Maeda, 3 (2010).

[94] H. Lin, Y. Li, Q. Deng, J. Xing, J. Liu, X. Zhu, H. Yang, and H.-h. Wen, Phys. Rev. B 93, 144505 (2016).

[95] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, Science (80-. ). 360, 182 (2018).

[96] M. Yi et al., Nat. Commun. 6, 7777 (2015).

[97] H. Kontani, Reports Prog. Phys. 71, 026501 (2008).

参考文献をもっと見る