リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transition from Dirac-node semimetal to magnetic insulator in perovskite-related iridium oxides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transition from Dirac-node semimetal to magnetic insulator in perovskite-related iridium oxides

根岸, 真通 東京大学 DOI:10.15083/0002006664

2023.03.24

概要

論文審査の結果の要旨
氏名

根岸 真通

本論文はディラック電子系における電子相関の効果をイリジウム酸化物において実験
的に研究したもので5章からなる。第1章は、イントロダクションであり、本研究の対象
であるディラック電子系における相関効果の研究の意義が述べられている。これまで、電
子相関の重要でない系でディラック電子系が開発され多くの関心を集めてきた。さらに、
近年、2層グラフェンにおける絶縁体近傍の超伝導の発見など、ディラック電子系におけ
る電子相関の効果に大きな関心が寄せられている。その中、3 次元物質における典型例の
創出が求められていた。
第2章は根岸氏がイリジウム酸化物を対象とした理由について述べられている。イリ
ジウム酸化物は、バンド幅、スピン軌道相互作用が電子相関と拮抗した系であり、相関効
果の研究に適している。特に、根岸氏は、バルクでは先行研究で報告されていた、異なる
強さの電子相関を持つディラック線ノード半金属・ペロブスカイト型イリジウム酸化物
SrIrO3・CaIrO3 に注目した。これらの物質に、Ir サイトの部分置換という摂動を加え、電
子相関の増強と乱れの導入を行うことによって、電子相関効果を解明することを目標と
した。
第3章は実験手法について述べられている。根岸氏は、ペロブスカイト型 Sr / CaIr1xSnxO3

のエピタキシャル薄膜を、パルスレーザー堆積法を用いて、ペロブスカイト型
SrTiO3 基板の(001)面上に成膜した。SrIr1-xSnxO3 については、表面にステップ-テラス構
造を持つ微傾斜基板を用いて、薄膜の結晶配向制御を行った。これらの試料について、X
線光電子分光によって化学量論比の評価を行い、X 線回折と透過型電子顕微鏡を用いて
結晶構造を評価した。そして、Sn 置換系の電子相図を、電気輸送特性と磁気特性を測定
することによって明らかにした。また、Ir の共鳴 X 線散乱を利用した磁気回折を行い、
Sn 置換 SrIrO3 の磁気構造を評価した。
第4章は実験結果と考察について述べられている。Sr / CaIr1-xSnxO3 のエピタキシャル
薄膜の作成に成功した。Sr / CaIrO3 どちらもディラック電子系に特有な半金属的な輸送
特性を示した。Sn 置換によって、Sr / CaIrO3 両方に弱強磁性が生じることを見出した。
しかし、輸送特性は、半金属から絶縁体への転移に際し、対照的なふるまいを示し、両者
の転移の機構が異なることが示された。Sn 置換された SrIrO3 は、磁気転移温度の周辺
に抵抗率の異常を示した。これは、磁性がエネルギーバンドにギャップが生成しているこ
とを示唆する。一方、本研究で初めて開発された新物質系 Sn 置換 CaIrO3 は、磁性とは
関係なく絶縁体に転移することがわかり、相関と乱れによる局在化効果が示唆された。こ
れらの異なる挙動は、SrIrO3 と CaIrO3 における電子相関の強さとキャリア濃度の違いに
起因すると考えられる。
第5章においては、本論文の結論が述べられている。Sn 置換された Sr / CaIrO3 が対
照的な半金属-絶縁体転移を示すという根岸氏の発見は、5d ディラック電子系において

電子相関強度の違いが多様な量子相をもたらすことを示す結果であり、物性物理分野に
おいて意義があると認められた。一方で、電子相関と、対称性に保護された線ノードのト
ポロジーがどのような協奏効果を生じるのかは、今後に残された未解決の課題である。
なお、本論文第3・4章は、平岡奈緒香、浜根大輔、高木英典、堀場 弘司、北村 未
歩、湯川 龍、組頭 広志、大隅 寛幸、有馬 孝尚との共同研究であるが、論文提出者
が主体となって実験とその結果の解析を行ったもので、根岸氏の寄与が十分であると判
断する。
よって、論文審査委員会は全員一致で博士(理学)の学位授与が適当であると結論した。

この論文で使われている画像

参考文献

[1] W. Wu, Y. Liu, S. Li, C. Zhong, Z.-M. Yu, X.-L. Sheng, Y. X. Zhao, and

S. A. Yang. Phys. Rev. B, 97:2115125, 2018.

[2] X. Zhang, Z.-M. Yu, Z. Zhu, W. Wu, S.-S. Wang, X.-L. Sheng, and S. A.

Yang. Phys. Rev. B, 97:235150, 2018.

[3] N. P. Armitage, E. J. Mele, and A. Vishwanath.

90:015001, 2018.

Rev. Mod. Phys.,

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,

I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Nature, 438:197–200,

2005.

[5] J. J. Yeh and I. Lindau. Atomic Data and Nuclear Data Table, 132:1–155,

1985.

[6] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and

P. Jarillo-Herrero. Nature, 556:43–50, 2018.

[7] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo,

J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C.

Ashoori1, and P. Jarillo-Herrero.

[8] K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A. A. Nugroho,

P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi,

R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro,

T. Koretsune, R. Arita, S. Shin, Takeshi Kondo, and S. Nakatsuji. Nat.

Mater., 16:1090–1095, 2017.

[9] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei,

W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X.

Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen. Science.,

365:1282–1285, 2019.

[10] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong. Rev.

Mod. Phys., 82:1539, 2010.

[11] B. J. Kim, Hosub Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem,

Jaejun Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao,

and E. Rotenberg. Phys. Rev. Lett., 101:076402, 2008.

[12] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and

T. Arima. Science, 323:1329–1332, 2009.

64

[13] J. M. Carter, V. V. Shankar, M. A. Zeb, and H.-Y. Kee. Phys. Rev. B,

85:115105, 2012.

[14] J. Fujioka, R. Yamada, M. Kawamura, S. Sakai, M. Hirayama, R. Arita,

T. Okawa, D. Hashizume, M. Hoshino, and Y. Tokura. Nat. Comm., 10:362,

2019.

[15] J. M. Longo, J. A. Kafalas, and R. J. Arnott. J. Sol. Stat. Chem., 3:174–

179, 1971.

[16] C. L. McDaniel and S. J. Schneider. J. Sol. Stat. Chem., 4:275–280, 1972.

[17] Y. Chen, H.-S. Kim, and H.-Y. Kee. Phys. Rev. B, 93:155140, 2016.

[18] K. Hirose and Y. Fujita. Geophys. Res. Lett., 32:12, 2005.

[19] Y. K. Kim, A. Sumi, K. Takahashi, S. Yokoyama, S. Ito, T. Watanabe,

K. Akiyama, S. Kaneko, and H. Funakubo. Jpn. J. Appl. Phys., 45:L36,

2006.

[20] L. Zhang, B. Pang, Y. B Chen, and Y. Chen. Critical Reviews in Solid

State and Materials Sciences, 43:5:367–391, 2018.

[21] S. Y. Jang, H. Kim, S. J. Moon, W. S. Choi, B. C. Jeon, J. Yu, and T. W.

Noh. J. Phys.: Condens. Matter, 22:485602, 2010.

[22] A. Biswas and Y. H. Jeong. J. Appl. Phys., 117:195305, 2015.

[23] D. Hirai, J. Matsuno, D. Nishio-Hamane, and H. Takagi. Appl. Phys. Lett.,

107:012104, 2015.

[24] M. Masuko, J. Fujioka, M. Nakamura, M. Kawasaki, and Y. Tokura. APL

Mater., 7:081115, 2019.

[25] B. L. Chamberland and A. R. Philpotts. Journal of Alloys and Compounds,

182:355–364, 1992.

[26] R. D. Shannon. Acta Cryst., A 32:751, 1976.

[27] A. Vegas, M. Vallet-Regi, J. M. Gonzalez-Calbet, and M. A. Alario-Franco.

Acta Cryst., B42:167–172, 1986.

[28] J. G. Zhao, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, Z. Fang, L. C. Chen,

and C. Q. Jin. J. Appl. Phys., 103:103706, 2008.

[29] P. E. Blanchard, E. Reynolds, B. J. Kennedy, J. A. Kimpton, M. Avdeev,

and A. A. Belik. Phys. Rev. B, 89:214106, 2014.

[30] J. Fujioka, T. Okawa, A. Yamamoto, and Y. Tokura.

95:121102(R), 2017.

Phys. Rev. B,

[31] A. A. Abrikosov. Europhys. Lett., 49(6):789–793, 2000.

[32] L. Zhang, H.-Y. Wu, J. Zhou, F.-X. Wu, Y. B. Chen, S.-H. Yao, S.-T.

Zhang, and Y.-F. Chen. Appl. Surf. Sci., 280:282–286, 2013.

65

[33] J. Liu, D. Kriegner, L. Horak, D. Puggioni, C. Rayan Serrao, R. Chen,

D. Yi, C. Frontera, V. Holy, A. Vishwanath, J. M. Rondinelli, X. Marti,

and R. Ramesh. Phys. Rev. B, 93:085118, 2016.

[34] L. Hor´ak, D. Kriegner, J. Liu, C. Frontera, X. Marti, and V. Hol´

y. J. Appl.

Cryst., 50:385–398, 2017.

[35] Y. F. Nie, P. D. C. King, C. H. Kim, M. Uchida, H. I. Wei, B. D. Faeth,

J. P. Ruf, J. P. C. Ruff, L. Xie, X. Pan, C. J. Fennie, D. G. Schlom, and

K. M. Shen. Phys. Rev. Lett., 114:016401, 2015.

[36] Z. T. Liu, M. Y. Li, Q. F. Li, J. S. Liu, W. Li, H. F. Yang, Q. Yao, C. C.

Fan, X. G. Wan, Z. Wang, and D. W. Shen. Sci. Rep., 6:30309, 2016.

[37] J. Matsuno, K. Ihara, S. Yamamura, H. Wadati, K. Ishii, V. V. Shankar,

H.-Y. Kee, and H. Takagi. Phys. Rev. Lett., 114:247209, 2015.

[38] A. Biswas, K.-S. Kim, and Y. H. Jeong. J. Appl. Phys., 116:213704, 2014.

[39] A. K. Jaiswal, R. Schneider, R. Singh, and D. Fuchs. Appl. Phys. Lett.,

115:031904.

[40] R. Yamada, J. Fujioka, M. Kawamura, S. Sakai, M. Hirayama, R. Arita,

T. Okawa, D. Hashizume, M. Hoshino, and Y. Tokura. Phys. Rev. Lett.,

123:216601, 2019.

[41] J.-G. Cheng, J.-S. Zhou, J. B. Goodenough, K. Matsubayashi, and Y. Uwatoko. JPS Conf. Proc., 3:013014, 2014.

[42] Q. Cui, J.-G. Cheng, W. Fan, A. E. Taylor, S. Calder, M. A. McGuire,

J.-Q. Yan, D. Meyers, X. Li, Y. Q. Cai, Y. Y. Jiao, Y. Choi, D. Haskel,

H. Gotou, Y. Uwatoko, J. Chankhalian, A. D. Christianson, S. Yunoki,

J. B. Goodenough, and J.-S. Zhou. Phys. Rev. Lett., 117:176603, 2016.

[43] J. Fujioka, T. Okawa, M. Masuko, A. Yamamoto, and Y. Tokura. J. Phys.

Soc. Jpn, 87:123706, 2018.

[44] R. G. Chambers. Proc. Phys. Soc. A, 65:903, 1952.

[45] M. Yabashi, T. Mochizuki, H. Yamazaki, S. Goto, H. Ohashi, K. Takeshita,

T. Ohata, T. Matsushita, K. Tamasaku, Y. Tanaka, and T. Ishikawa. Nuclear Instruments and Methods in Physics Research A, 467-468:678–681,

2001.

[46] S. Grenier and Y. Joly. J. Phys.: Conference Series, 519:012001, 2014.

[47] T. Moriya. Phys. Rev., 120:91–98, 1960.

[48] I. Qasim, B. J. Kennedy, and M. Avdeev. J. Mater. Chem. A, 1:3127–3132,

2013.

[49] T. Takayama, A. N. Yaresko, and H. Takagi. J. Phys.: Condens. Matter,

31:074001, 2018.

[50] A. Sumi, Y. K. Kim, N. Oshima, K. Akiyama, K. Saito, and H. Funakubo.

Thin Solid Films, 486:182–185, 2005.

66

Appendix A

Monoclinic SrIrO3

A.1

Introduction

Monoclinic SrIrO3 has a three dimensional network of IrO6 octahedra connecting each other at corner or face (Fig. A.1). Ir atoms align in the ab plane

like the triangular lattice. Such the layers stack along the c direction with

six-fold periodicity. The structure is almost hexagonal but slightly distorted

to monoclinic. This structure is called as 6H or 6M by taking the periodicity

along the c direction and the symmetry. The space group of the structure is

No. 15 (C 1 2/c 1). The lattice parameters are given as a = 5.60401(29) ˚

A,

b = 9.6256(4) ˚

A, c = 14.1834(7) ˚

A and β = 93.202(4)◦ [48].

Band calculation predicts that monoclinic SrIrO3 will have Dirac nodes at

A and M points on the boundary of the Brillouin zone (Fig. A.2) [49].

Polycrystalline bulk of monoclinic SrIrO3 is paramagnetic, and shows semimetallic resistivity [49]. These results are consistent with the band calculation.

For thin film, there is a study which reported realization of monoclinic SrIrO 3

as epitaxial thin films on SrTiO3 (111) substrates [50]. However, to our knowledge, there is no previous report which investigated electric transport properties

of monoclinic SrIrO3 thin films.

Figure A.1: Crystal structure of monoclinic SrIrO3 [48]. Lime balls: Sr. Yellow

balls: Ir. Red balls: O.

67

(a) Notation of k-space.

(b) Band dispersion.

Figure A.2: LDA calculation of band structure of 6M SrIrO3 with spin orbit

coupling. The figures are quoted from T. Takayama et al. (2019) [49].

A.2

Methods

We synthesized epitaxial thin films of SrIrO3 on SrTiO3 (111) substrates by

pulsed laser deposition. We performed X-ray diffraction and X-ray reflectivity

measurements for evaluation of crystal structure. We investigated transport

properties of the samples. These methods are similar to those for perovskite

iridates explained in the main article. For electric transport measurements of

monoclinic SrIrO3 / STO(111) samples, we used 5 mm × 2.5 mm samples with

edges parallel to [211] and [011] directions and printed the single Hall bar pattern

(Fig. 2.6a) on it. Thus, current is parallel to [211] or [011], but not controlled1 .

A.3

A.3.1

Results

Crystal structure

Fig. A.3 shows a result of XRD 2θ-θ scan of a SrIrO3 thin film sample fabricated

on SrTiO3 (111) plane. Two sharp peaks at 2θ = 40◦ and 86◦ correspond to 111

and 222 reflections of the SrTiO3 substrate. Peaks from the SrIrO3 film show

roughly three-fold periodicity of SrTiO3 nnn reflections, which are identified as

0 0 2n reflections of the monoclinic phase of SrTiO3 . The out-of-plane lattice

constant of the SrTiO3 film is estimated as 14.17(1) ˚

A and agrees with the bulk

value (c sin(β) = 14.16 ˚

A [48]).

To investigate the epitaxial relationship between the film and the substrate,

we conducted XRD reciprocal mapping around 231 and 131 SrTiO3 diffraction

spots (see Fig. A.4.). Film peaks around 231STO are identified as 2 0 12, 1 3 12,

1 3 12 and 2 0 12, while ones around 131STO are 2 2 11, 0 4(4) 11 and 2 2 11,

though overlapping of the peaks makes it difficult to determine their precise

positions. Therefore, relationship of crystalline orientation between film and

substrate is summarized as below:

a × b || [111] and

a || [011] or

a || [101]

or

a || [110] )

(A.1)

1 We should have controlled it, but we did not notice inequivalence of [211] and [011] when

we did the experiments.

68

10

STO 222

SIO 0 0 12

10

SIO 006

SIO 004

10

SIO 0 0 10

10

6M SrIrO3 / SrTiO3(111)

SIO 008

STO 111

10

SIO 002

XRD Intensity (cps)

10

10

20

40

60

80

100

2q (degree)

Figure A.3: XRD 2θ-θ scan of monoclinic (6M) SrIrO3 / SrTiO3 (111) film.

0.92

0.82

6M SrIrO3

6M SrIrO3

-1

0.88

2 0 12

0.86

0.84

0.82

0.80

1 3 12

1 3 12

2 0 12

0.78

0 4 11

2 2 11

0.76

0.74

STO 131

0.72

6M SrIrO3 / SrTiO3(111)

6M SrIrO3 / SrTiO3(111)

0.32

2 2 11

0.80

STO 231

q[111] (Å )

-1

q[111] (Å )

0.90

0.36

0.70

0.40

0.36

-1

0.40

0.44

0.48

-1

q[011] (Å )

- q[121] (Å )

(a) Around 231STO .

(b) Around 131STO .

Figure A.4: XRD reciprocal space mapping of monoclinic (6M) SrIrO3 /

SrTiO3 (111) film. Markers: calculated from bulk lattice constants.

The in-plane lattice of SrIrO3 is not fixed to that of STO, but lattice parameters

of film along [011]STO direction shrinks by ∼ 0.2 - 0.5 % from bulk. Distances

in reciprocal space between plus-minus pairs of diffractive points like 2 2 11 SIO

and 2 2 11SIO shrink from estimation from bulk lattice constants, which suggests

that the lattice constant β of SrIrO3 becomes closer to 90◦ .

A.3.2

Semimatallic properties

Fig. A.5 shows experimental results of temperature-dependent resistivity of

monoclinic SrIrO3 thin films. Resistivity gradually decreases as temperature

decreases, similarly to bulk [49]. This temperature-dependence supports the

semimetallic electronic state.

Fig. A.6 displays measured Hall coefficients of monoclinic SrIrO3 film samples. The results show V-shaped temperature-dependence and large sampledependence. The temperature-dependence of RH suggests existence of three

kinds of conducting carriers: (1) hole-type carriers which has positive contribution on RH at low temperature (< 10 K), (2) electron-type carriers which

has negative contribution on RH at moderate temperature (∼ 50 K), and (3)

69

1.4

(mΩcm)

1.2

1.0

0.8

#12

#14

#13

#01

0.6

0.4

0.2

6M SrIrO3 / SrTiO3(111)

0.0

100

200

300

T (K)

Figure A.5: Temperature-dependent resistivity of monoclinic (6M) SrIrO 3 /

SrTiO3 (111) films.

hole-type carriers which have positive contribution on RH at high temperature

(> 150 K). Since low temperature properties are determined by band structure

very near the Fermi level EF , (1) indicates a hole band crossing with the Fermi

level. If several band crosses with the Fermi level, the one with highest mobility

will be hole-type. On the other hand, (2) suggests that an electron band with

higher mobility than hole (1) is located a few milli-electron volts above EF .

Therefore, (1) and (2) suggest the existence of Dirac nodes a few milli-electron

volts above EF . Positive Hall coefficient (3) comes from a non-Dirac hole band

with large carrier density. Large sample-dependence of RH indicates that carrier balance is strongly affected by sample quality, probably lattice relaxation

or degree of oxygen deficiency.

Fig. A.7a shows magnetoresistance (MR) of monoclinic SrIrO3 film and

Fig. A.7b shows field direction-dependence of MR. MR takes its maximum value

when the field is parallel to the current, indicating orbital contribution. MR

is positive and linear-like. These features may be attributed to the linear MR

at quantum limit which is often observed in semimetals with small Fermi surfaces [31], like Dirac semimetals.

A.4

A.4.1

Discussion

Crystal structure

As mentioned in the main article, AIrO3 hosts a variety of crystalline polytypes,

and the monoclinic (6M) perovskite structure is a stable structure for bulk

SrIrO3 at ambient pressure. The orthorhombic perovskite phase is realized

at high pressure and high temperature. In our experiments, SrIrO3 grown on

STO(111) realizes the monoclinic phase, while SrIrO3 on STO(100) forms the

perovskite phase. Reasons of the selective growth of the crystalline polytypes

are attributed to characters of (001) and (111) planes, not strengths of epitaxial

strain. We suggest two factors which will enable this selective growth.

70

2.0

6M SrIrO3 / SrTiO3(111)

1.0

0.5

-3

RH (x10 cm /C)

1.5

0.0

-0.5

#12

#14

#13

#01

-1.0

-1.5

4 6

4 6

10

100

4 6

1000

T (K)

Figure A.6: Temperature-dependent Hall coefficient of monoclinic (6M) SrIrO 3

/ SrTiO3 (111) films.

(1) Similarity of crystal structures. The orthorhombic perovskite structure of SrIrO3 has only corner-sharing connections between IrO6 octahedra

and can be obtained by lattice distortions from cubic perovskite structure

of SrTiO3 . Therefore both (001) and (111) planes of SrTiO3 will allow

continuous connection to orthorhombic perovskite SrIrO3 . On the other

hand, the monoclinic SrIrO3 has both corner- and face-sharing connections between IrO6 octahedra. The direction of face-sharing connections

is along the c axis of monoclinic SrIrO3 unit cell, and IrO6 octahedra align

in the ab plane like the (111) plane in cubic perovskite. However, one cannot find a crystalline plane in monoclinic SrIrO3 which has square-like

periodicity like the (001) plane of cubic perovskite. This analysis supports the experimental results that the monoclinic SrIrO3 phase grows

not on (001)STO but on (111)STO .

(2) In-plane lattice fixing The XRD results show that the in-plane lattice of

perovskite SrIrO3 is fixed to the substrate while that of monoclinic SrIrO3

is partially relaxed. This means that perovskite SrIrO3 on STO(001)

receives stronger compressive strain than monoclinic SrIrO3 on STO(111),

which is consistent with the bulk phase diagram in which perovskite SrIrO 3

is located at high pressure. The reason for this difference of in-plane lattice

fixing is still an open question.

We suggest a hypothesis that different charge ordering patterns of SrTiO 3 ’s

surfaces may allow this difference of in-plane lattice fixing. When the [001]

direction is defined as the stacking direction, the surface plane contains either [Sr2+ O2− ] or [Ir4+ (O2− )2 ] ions. Therefore, the SrTiO3 (001) plane has

both positive and negative ions and will make a fluctuating potential for

deposited particles. On the other hand, when the [111] direction is defined

as the stacking direction the surface plane contains either [Sr2+ (O2− )3 ] or

[Ir4+ ] ions. These planes are more homogeneous than (001) planes in terms

of variation of the charges of the ions which the planes include. Therefore,

the SrTiO3 (111) plane will cause a more moderately changing potential

71

1.0

6M SrIrO3 / SrTiO3(111)

MR (%)

0.8

2K

5K

10K

20K

40K

80K

0.6

0.4

0.2

0.0

-10

-5

10

B (T)

(a) Transverse magnetoresistance.

(mΩcm)

0.4685

6M SrIrO3 / SrTiO3(111)

0.4680

0.4675

2K

9T

0.4670

90

180

270

360

Angle (degree)

(b) Dependence of direction of external field. B || [111] ⊥ I for 0◦ . B || [110] || I for

90◦ .

Figure A.7: Magnetoresistance of monoclinic (6M) SrIrO3 / SrTiO3 (111) film.

72

on the surface than the SrTiO3 (001) surface. This difference of the ordering patterns of charges in SrTiO3 ’s surfaces may explain the difference of

in-plane lattice fixing depending on (001) or (111) surfaces.

A.4.2

Semimetallic properties

Monoclinic SrIrO3 films have large sample-dependency in Hall effect, which

indicates semimetallic states with both electrons and holes. The scales of

carrier density and mobility are roughly estimated as n ∼ +1021 cm−3 and

µ ∼ +1 cm2 V−1 s−1 using a single carrier model. Na´ıvely speaking, these values, relatively large carrier density and small mobility, have least “Dirac-ness”

in the three materials investigated in this study. Probably the electrons and

holes in this material, generated by the two distinct Dirac nodes, will have comparable densities and mobilities, and their cancellation may pretend small Hall

coefficient |RH |.

73

Appendix B

Data for Hall effect of Sn

doped CaIrO3

Fig. B.1 shows Hall resistivity of Sn doped CaIrO3 films.

74

100

CaIr0.99 Sn0.01 O3

/ SrTiO3(001)

(µΩcm)

I || [100]STO

B || [001]STO

FC(9T)

-50

80K

120K

160K

200K

2K

5K

10K

20K

40K

yx

yx

(µΩcm)

50

-5

CaIr0.98 Sn0.02 O3 / SrTiO3(001)

20

I || [100]STO

B || [001]STO

FC(9T)

10

-10

2K

5K

10K

20K

40K

-20

-30 [ryx(B, down) - ryx(-B, up)] / 2

[ryx(B, down) - ryx(-B, up)] / 2

-100

-10

30

10

-10

-5

B (T)

(a) x = 0.01.

CaIr0.96 Sn0.04 O3

/ SrTiO3(001)

(µΩcm)

80K

120K

160K

200K

-5

5K

10K

20K

40K

80K

-10

[ryx(B, down) - ryx(-B, up)] / 2

-40

-10

I || [100]STO

B || [001]STO

FC(9T)

2K

5K

10K

20K

40K

10

yx

yx

(µΩcm)

I || [100]STO

B || [001]STO

FC(9T)

-20

[ryx(B, down) - ryx(-B, up)] / 2

-20

-10

10

-5

B (T)

200

CaIr0.9 Sn0.1 O3

/ SrTiO3(001)

40

-20

-40

80K

120K

160K

200K

-100

-5

I || [100]STO

B || [001]STO

FC(9T)

40K

80K

120K

160K

200K

-200 [ryx(B, down) - ryx(-B, up)] / 2

[ryx(B, down) - ryx(-B, up)] / 2

-80

-10

20 nm thick

2K

5K

10K

20K

40K

10

CaIr0.8 Sn0.2 O3

/ SrTiO3(001)

100

yx

(µΩcm)

I || [100]STO

B || [001]STO

FC(9T)

20

(d) x = 0.03.

20 nm thick

60

B (T)

(c) x = 0.03.

80

(µΩcm)

10

20

CaIr0.97 Sn0.03 O3

/ SrTiO3(001)

20

yx

(b) x = 0.02.

40

-60

B (T)

10

-10

-5

10

B (T)

B (T)

(f) x = 0.2.

(e) x = 0.1.

Figure B.1: Hall resistivity ρyx (Bz ) of CaIr1−x Snx O3 thin films. The samples

for x = 0.1 and 0.2 are 20 nm-thick, since Hall measurements on 10 nm-thick

samples with high resistivity were difficult.

75

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る