リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「On a mathematical modeling and a computer-aided analysis for self-propelled systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

On a mathematical modeling and a computer-aided analysis for self-propelled systems

安ヶ平, 裕介 北海道大学

2022.06.30

概要

Since the work of T. Vicsek et al., many theoretical analyses using particle motion models have been performed to understand the collective motion of biological species [1]. For example, flocks of birds [2], schools of fish [3], and insect swarms [4] have been investigated. In addition, physicists have developed many mathematical models of collective motion assuming various interactions [6–11]. Recently, there is also an analysis of collective motion that considers non-local interactions [12]. Moreover, spontaneous motions of non-living systems have been reported, such as collective motions using liquid crystal molecules [13], micotubes [14, 15], asymmetric particles called Janus colloidal particles [17] on the micromere scale [18], millimeter rods [16], etc.

In particular, there is a macroscopic experimental system called a selfpropelled system in which individual materials move by changing the state of the field. For example, camphor particles [19] and oil droplets [20, 21] move in translational motion by changing the surface tension of the water.

Many types of research have been performed to understand the mechanism of collective motions using such self-propelled systems, and collective motions on annular water channels using camphor boats and camphor disks [22, 23] and on the water surface of petri dishes [24–26] have been reported. In addition, a self-assembly motion of droplets has been reported by using the chemical reaction [27]. The mathematical model has also been proposed to understand the collective motion for such macroscopic selfpropelled material. For example, there is a mathematical model for the collective motion of camphor boats in the annular water channel [28] and the collective oscillatory motion of camphor disks [29], and there is also a mathematical model for the self-assembly motion of droplets with the chemical reaction [30].

参考文献

Part1

[1] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett.75, 1226–1229 (1995).

[2] M. Ballerini, N. Cabibbo,R. Candelier, A. Cavagna, E. Cisbani, I. Giardina et al. , Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008).

[3] J. K. Parrish and L. Edelstein-Keshet, Complexity, Pattern, and Evolutionary Trade-O↵s in Animal Aggregation, Science 284, 99-101(1999).

[4] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson, From disorder to order in marching locusts, Science 312, 1402-1406 (2006).

[5] E. M´ehes and T. Vicesk, Collective motion of cells: from experiments to models Integr. Biol. 6, 831-854 (2014).

[6] N. Shimoyama, T. Mizuguchi, Y. Hayakawa and M. Sano. Collective Motion in a System of Motile Elements, Phys. Rev. Lett., 76(20), )2870- 3873 (1996).

[7] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking , Phys. Rev. R 58(4), 4828- 4858 (1998).

[8] A. Czir´ok and T. Vicsek, Collective behavior of interacting self-propelled particles, Physica A, 281, 17-29 (2000).

[9] H. Kevine, W.-J. Pappel and I. Cohenm Self-organization in systems of self-propelled particles , Phys. Rev. E, 63, 017101 (200).

[10] T. Niisato and Y.-P. Gunji, Metric-topological interaction model of collective behavior, Ecological Modelling, 222, 3041-3049 (2011).

[11] H. .E. Ribeiro and F. Q. Potiguar, Active matter in lateral parabolic confinement: From subdi↵usion to superdi↵usion, Physica A, 462, 1294- 1300 (2016).

[12] A. .E. B. T. King and M. S. Tumerm Non-local interactions in collective motion, R. .Soc. Open Sci., 8, 201536 (2021).

[13] T. Sanchez,D. T. Chen, S. J. Decamp, M. Heymann and Z. Dogic, Spontaneous motion in hierarchically assembled active matter, Nature 491, 431-434 (2012).

[14] Y. Hong, D. Velegol, N. Chatuvedi and A. Sen, Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control, Phys. Chem. Chem. Phys., 23, 1423-1435 (2010).

[15] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chat´e, K. Oiwa, Large-scale vortex lattice emerging from collectively moving microtubules, Nature 483, 448-452 (2012).

[16] N. Kumar, H. Soni, S. Ramaswamy and A. K. Sood, Flocking at a distance in active granular matter, Nature Communications 5, 4688 (2014).

[17] H. R. Jiang, N. Yoshinaga, M. Sano, Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam, Phys. Rev. Lett. 105 (2010) 268302.

[18] I. Buttinoni, J. Bialk´e, F. K ˙ummel, H. L˙owen, C. Bechinger, T. Speck, Dynamical clustering and phase separation in suspensions of self- propelled colloidal particles, Phys. Rev. Lett. 110, 1-8 (2013).

[19] S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama,T. Ishii and K. Yoshikawa, Self-Rotation of a Camphor Scraping on Water; New Insight into the Old Problem, Langmuir 13, 4454 (1997).

[20] Y. Sumino, N. Magome, T. Hamada and K. Yoshikawa, Self-Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise, Phys. Rev. Lett., 94, 068301 (2005).

[21] K. Nagai, Y. Sumino, H. Kitahata, and K. Yoshikawa, Mode selection in the spontaneous motion of an alcohol droplet, Phys. Rev. E ,71, 065301(R) (2005).

[22] N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81, 056210 (2010).

[23] E. Heisler, N. J. Suematsu, A. Awazu, and H. Nishimori, Swarming of self-propelled camphor boats, Phys. Rev. E, 85, 055201(R) (2012).

[24] S. Soh, K. J. M. Bishop and B. A. Grzybowski Dynamic Self-Assembly in Ensembles of Camphor Boats, J. Phys. Chem. B, 112, 10848–10853 (2008).

[25] S. Soh, M. Branicki and B. A. Grzybowski, Swarming in Shallow Waters, J. Phys. Chem. Lett., 2, 770–774 (2011).

[26] N. J. Suematsu, K. Tateno, S. Nakata, H. Nishimori, Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks, J. Phys. Soc. Jpn., 84, 034802 (2015).

[27] S. Tanaka, S. Nakata and T. Kano, Dynamic ordering in a swarm of floating droplets driven by solutal Marangoni e↵ect, J. Phys. Soc. Jpn., 86, 101004 (2017).

[28] E. Heisler, N. J. Suematsu, A. Awazu, and H. Nishimori, Collective Motion and Phase Transitions of Symmetric Camphor Boats, J. Phys. Soc. Jpn., 81, 074605 (2012).

[29] Y. Matsuda, K. Ikeda, Y. S. Ikura, H. Nishimori and N. J. Suematsu, Dynamical Quorum Sensing in Non-Living Active Matter, J. Phys. Soc. Jpn., 88, 093002 (2019)

[30] M. Kim, M. Okamoto, Y. Yasugahira, S. Tanaka, S. Nakata, Y. Kobayashi and M. Nagayama, A reaction-di↵usion particle model for clustering of self-propelled oil droplets on a surfactant solution, Physica D, 425, 132949(2021).

[31] S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu, T. Hasegawa, Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Phys. Chem. Chem. Phys., 17, 10326–10338 (2015),

[32] M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima, A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D, 194, 151–165 (2004).

[33] Y. Koyano, N. Yoshinaga, and H. Kitahata, General criteria for determining rotation or oscillation in a two-dimensional axisymmetric system, J. Chem. Phys., 143, 014117/1-6 (2015).

[34] Y. Koyano, T. Sakurai, and H. Kitahata, Oscillatory motion of a camphor grain in a one-dimensional finite region, Phys. Rev. E, 94, 042215 (2016).

[35] Y. Koyano, N. J. Suematsu, and H. Kitahata, Rotational motion of a camphor disk in a circular region, Phys. Rev. E, 99, 022211 (2019).

[36] D. Boniface, C. Cottin-Bizonne, R. Kervil, C. Ybert, and F. Detcheverry, Self-propulsion of symmetric chemically active particles: Pointsource model and experiments on camphor disks, Phys. Rev. E, 99, 062605 (2019).

[37] M. Okamoto, T. Gotoda, and M. Nagayama, Global existence of a unique solution and a bimodal travelling wave solution for the 1D particle-reaction-di↵usion system, J. Phys. Commun., 5, 055016 (2021).

[38] M. Okamoto, T. Gotoda and M. Nagayama, Existence and nonexistence of asymmetrically rotating solutions to a mathematical model 31 of self-propelled motion, Japan J. Indust. Appl. Math., 37(3), 883-912 (2020).

[39] J. Fan, M. Nagayama, G. Nakamura, M. Okamoto, A weak solution for a point mass camphor motion, Di↵erential Integral Equations 33(7-8), 431-443 (2020).

[40] Y. S. Ikura, E. Heisler, A. Awazu, H. Nishimori and S. Nakata, Collective motion of symmetric camphor papers in an annular water channel, Phys. Rev. E, 88, 012911 (2013).

[41] K. Nishi, T. Ueda, M. Yoshii, Y. S. Ikura, H. Nishimori, S. Nakata and M. Nagayama, Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length, Phys. Rev. E 92, 022910 (2015).

[42] K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer (1996).

[43] V.S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova and L. Schimansky-Geier, Nonlinear dynamics of chaotic and stochastic systems. Tutorial and Modern Developments, Springer (2007).

[44] M. Balcerzak, D. Pikunov and A. Dabrowski, The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems, Nonlinear Dyn. 94, 3053-3065 (2018).

[45] S. Newhouse, D. Ruelle and F. Takens Occurrence of strange Axiom A attractors near quasiperiodic flows on T m, m 3, Communications in Mathematical Physics, 64(1), 35-40, (1978)

[46] E. Hairer and G. Wanner, ROS4, http://www.unige.ch/~hairer/ prog/stiff/Oldies/ros4.f, accessed: 2021-08-28 (1992).

[47] E. Hairer, Fortran Codes, http://www.unige.ch/~hairer/software. html, accessed: 2021-08-28.

[48] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Di↵erential Equations II: Sti↵ and Di↵erential-Algebraic Problems, 2nd Edition, Springer (1996).

[49] E. Hairer and G. Wanner, Solving Ordinary Di↵erential Equations II: Sti↵ and Di↵erential-Algebraic Problems, 2nd Edition, Springer (1996).

[50] H.B. Keller, Lectures on numerical methods in bifurcation problems, Applied Mathematics, 217, 50 (1987).

[51] G. Guennebaud, B. Jacob and others, Eigen, http://eigen. tuxfamily.org, accessed: 2021-08-28 (2010).

[52] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema and C.B. Moler, Matrix Eigensystem Routines, EISPACK Guide, Lecture Notes in Computer Science , Volume 6, Springer Verlag (1976).

[53] R.B. Lehoucq, D.C. Sorensen and C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM (1998).

[54] H. B. Keller, Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, Waltham (1968).

[55] L. B. Rall, Automatic Di↵erentiation: Techniques and Applications, Springer (1981).

Part2

[1] Y. Yasugahira, Y. Tatsumi, O. Yamanaka, H. Nishimori, M. Nagayama, S. Nakata, Catch and Release Chemotaxis, ChemSystemsChem e2100031 (2021).

[2] J. Adler, Chemotaxis in Bacteria, Science, 153, 3737, 708-716 (1966).

[3] C. A. Parent, P. N. Devreotes, A Cell’s Sense of Direction, Science, 284, 5415, 765-770 (1999).

[4] A. V. Vorotnikov, Chemotaxis: Movement, direction, control, 76, 1528–1555 (2011).

[5] G. L. Hazelbauer, Bacterial Chemotaxis: The Early Years of Molecular Studies, Annual Review of Microbiology, 66, 285-303 (2012).

[6] S. Bi, V. Sourjik, Stimulus sensing and signal processing in bacterial chemotaxis, Current Opinion in Microbiology, 45, 22-29 (2019).

[7] I. Lagzi, S. Soh, P. J. Wesson, K. P. Browne, B. A. Grzybowski, Maze Solving by Chemotactic Droplets, Journal of the American Chemical Society, 132, 1198–1199 (2010).

[8] J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Osmotic traps for colloids and macromolecules based on logarithmic sensing in salt taxis, Soft Matter, 8, 980–994 (2012).

[9] K. K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, The pH Taxis of an Intelligent Catalytic Microbot, Small, 9, 1916–1920 (2013).

[10] J. Cejkov´a, M. Nov´ak, F. ˇ Stˇep´anek, M. M. Hanczyc, ˇ Dynamics of Chemotactic Droplets in Salt Concentration Gradients, Langmuir, 30, 11937–11944 (2014).

[11] P. Lovass, M. Branicki, R. T´oth, A. Braun, K. Suzuno, D. Ueyama, I. Lagzi, Maze solving using temperature-induced Marangoni flow, RSC Advances, 5, 48563–48568 (2015).

[12] C. Jin, C. Kr¨uger, C. C. Maas, Chemotaxis and autochemotaxis of selfpropelling droplet swimmers, PNAS, 114, 5089–5094 (2017).

[13] A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez, J. Gaitzsch, G. Fullstone, X. Tian, J. Azizi, J. Preston, G. Volpe, G. Battaglia, Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing, Science Advances, 3, e1700362 (2017).

[14] B. Liebchen, H. L¨owen, Synthetic Chemotaxis and Collective Behavior in Active Matter, Accounts of Chemical Research, 51 (12), 2982-2990 (2018).

[15] S. Holler, C. Porcelli, I. A. Ieropoulos, M. M. Hanczyc, Transport of Live Cells Under Sterile Conditions Using a Chemotactic Droplet, Scientific Reports, 8, 8408(2018).

[16] Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao, Q. He, Macroscale Chemotaxis from a Swarm of Bacteria-Mimicking Nanoswimmers, Angewandte Chemie International Edition, 58, 12200–12205 (2019), Angewandte Chemie, 131, 12328–12333 (2019).

[17] L. Baraban, S. M. Harazim, S. Sanchez, O. G. Schmidt, Chemotactic Behavior of Catalytic Motors in Microfluidic Channels, Angewandte Chemie International Edition, 52, 5552-5556 (2013), Angewandte Chemie, 125, 5662–5666 (2013).

[18] S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu, T. Hasegawa, Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Physical Chemistry Chemical Physics, 17, 10326–10338 (2015).

[19] N. J. Suematsu, S. Nakata, Evolution of Self-Propelled Objects: From the Viewpoint of Nonlinear Science, Chemistry - A European Journal, 24, 6308 (2018).

[20] Self-Organized Motion: Physicochemical Design Based on Nonlinear Dynamics (Edited by S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata, N. J. Suematsu), The Royal Society of Chemistry, Cambridge (2019).

[21] S. Nakata, Y. Irie, N. J. Suematsu, Self-Propelled Motion of a Coumarin Disk Characteristically Changed in Couple with Hydrolysis on an Aqueous Phase, The Journal of Physical Chemistry B, 123, 4311-4317 (2019).

[22] Y. Satoh, Y. Sogabe, K. Kayahara, S. Tanaka, M. Nagayama, S. Nakata, Self-inverted reciprocation of an oil droplet on a surfactant solution, Soft Matter, 13, 3422-3430 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る