リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Coarse grained DEM simulation of non-spherical and poly-dispersed particles using Scaled-Up Particle (SUP) model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Coarse grained DEM simulation of non-spherical and poly-dispersed particles using Scaled-Up Particle (SUP) model

Washino, Kimiaki 大阪大学

2023.08.01

概要

Various kinds of powders and particles can be found in nature or
produced in industry, and they are stored, transported, mixed and/or
separated in a wide range of engineering applications. Individual particle properties such as size, shape and surface energy can have a
considerable impact on the way the particles interact with neighbouring particles and wall boundaries, which affects the bulk flow
dynamics. However, particle level interactions are extremely complex
and challenging to be observed by experiment, and our knowledge
today is still limited. Therefore, the design of equipment and process
conditions are often determined empirically which is inefficient and
requires numerous trial-and-errors.
Numerical simulation can be a powerful alternative tool to understand the underlying physics to achieve better process control,
optimisation and troubleshooting. Discrete Element Method (DEM) [1]
has become a particularly popular choice of simulating particulate
flows where the movement of particles is carefully tracked in a Lagrangian manner. One of the main advantages of DEM over a Eulerian
model is that the individual particle properties and the inter-particle
interactions can be directly considered.
In many studies in the literature (e.g., [2,3]), spherical particles
are used in DEM because of (a) fast contact detection, (b) simple
form of the rotational equation to solve, and (c) easy implementation
in a numerical code. However, most of the real-life particles are not
spherical but have complex shapes. Rolling resistance [4,5] is sometimes utilised to artificially take into account particle non-sphericity
while using spherical particles. Although this is an easy and convenient
method, it is still unclear how much the rolling resistance alone can
mimic various physical effects caused by particle shape such as particle
inter-locking [6]. To the best of the authors’ knowledge, there is no rule
of thumb to determine the type and magnitude of rolling resistance to
properly represent the high non-sphericity of particles.
Several models are already proposed and used in the literature to
directly represent the non-sphericity of particles in DEM. A good review
can be found in [7]. One of the most commonly used models is the multisphere model that uses multiple sub-spheres rigidly clumped together
to represent one non-spherical particle [8–12]. In this way, the particle
contact can be detected using the same algorithm for spheres, and any
shape, in theory, can be represented by changing the number, size and
position of the sub-spheres. The drawbacks are (a) the computational
cost increases rapidly as the number of sub-spheres increases and (b)
the resultant particle surface has perceptible roughness in the scale of
the sub-spheres. Another popular model to explicitly handle particle
non-sphericity is the polyhedral model [13–15] where one particle
consists of multiple facets. It can represent arbitrary particle shape
even with sharp corners. However, very small facets are required to
properly represent a particle surface with high curvature, which can
increase the computational cost enormously. An alternative approach
is to implicitly capture particle shape using a mathematical function.
Particularly, the superquadric function, which is first introduced by
Barr [16], has attracted much attention since it can describe a variety of
non-spherical shapes commonly found in engineering applications such
as ellipsoids, cuboids, disks and rods by changing only 5 parameters for
size and blockiness [12,17,18]. ...

この論文で使われている画像

参考文献

[1] P.A. Cundall, O.D.L. Strack, Discrete numerical model for granular assemblies,

Geotechnique 29–1 (1979) 47–65, http://dx.doi.org/10.1680/geot.1979.29.1.47.

[2] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of

cohesionless particles in a horizontal pipe, Powder Technol. 71 (1992) 239–250,

http://dx.doi.org/10.1016/0032-5910(92)88030-L.

[3] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of twodimensional fluidized bed, Powder Technol. 77 (1993) 79–87, http://dx.doi.org/

10.1016/0032-5910(93)85010-7.

[4] K. Iwashita, M. Oda, Rolling resistance at contacts in simulation of shear band

development by DEM, J. Eng. Mech. 124 (1998) 285–292, http://dx.doi.org/10.

1061/(asce)0733-9399(1998)124:3(285).

[5] J. Ai, J.F. Chen, J.M. Rotter, J.Y. Ooi, Assessment of rolling resistance models

in discrete element simulations, Powder Technol. 206 (2011) 269–282, http:

//dx.doi.org/10.1016/j.powtec.2010.09.030.

[6] P.W. Cleary, DEM prediction of industrial and geophysical particle flows,

Particuology 8 (2010) 106–118, http://dx.doi.org/10.1016/j.partic.2009.05.006.

[7] W. Zhong, A. Yu, X. Liu, Z. Tong, H. Zhang, DEM/CFD-DEM modelling of nonspherical particulate systems: Theoretical developments and applications, Powder

Technol. 302 (2016) 108–152, http://dx.doi.org/10.1016/j.powtec.2016.07.010,

URL https://linkinghub.elsevier.com/retrieve/pii/S0032591016304065.

[8] J. Favier, M. Abbaspour-Fard, M. Kremmer, A. Raji, Shape representation of

axi-symmetrical, non-spherical particles in discrete element simulation using

multi-element model particles, Eng. Comput. 16 (1999) 467–480, http://dx.

doi.org/10.1108/02644409910271894, URL https://www.emerald.com/insight/

content/doi/10.1108/02644409910271894/full/html.

[9] H. Kruggel-Emden, S. Rickelt, S. Wirtz, V. Scherer, A study on the validity of

the multi-sphere discrete element method, Powder Technol. 188 (2008) 153–

165, http://dx.doi.org/10.1016/j.powtec.2008.04.037, URL https://linkinghub.

elsevier.com/retrieve/pii/S0032591008002143.

[10] D. Markauskas, R. Kačianauskas, A. Džiugys, R. Navakas, Investigation of

adequacy of multi-sphere approximation of elliptical particles for DEM simulations, Granul. Matter 12 (2010) 107–123, http://dx.doi.org/10.1007/s10035009-0158-y.

[11] B. Soltanbeigi, A. Podlozhnyuk, S.A. Papanicolopulos, C. Kloss, S. Pirker, J.Y.

Ooi, DEM study of mechanical characteristics of multi-spherical and superquadric

particles at micro and macro scales, Powder Technol. 329 (2018) 288–303,

http://dx.doi.org/10.1016/J.POWTEC.2018.01.082.

[12] B. Kravets, D. Schulz, R. Jasevičius, S.R. Reinecke, T. Rosemann, H. KruggelEmden, Comparison of particle-resolved DNS (PR-DNS) and non-resolved

DEM/CFD simulations of flow through homogenous ensembles of fixed spherical

and non-spherical particles, Adv. Powder Technol. 32 (2021) 1170–1195, http:

//dx.doi.org/10.1016/j.apt.2021.02.016.

[13] P. Cundall, Formulation of a three-dimensional distinct element model—Part

I. A scheme to detect and represent contacts in a system composed of many

polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25 (1988)

107–116, http://dx.doi.org/10.1016/0148-9062(88)92293-0.

CRediT authorship contribution statement

Kimiaki Washino: Conceptualization, Methodology, Software, Validation, Data curation, Investigation, Writing – original draft. Ei L.

Chan: Validation, Data curation, Software, Investigation, Writing –

review & editing. Yukiko Nishida: Data curation. Takuya Tsuji: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors are grateful to JSPS, Japan (KAKENHI Grant No.

20K11850) for the financial support to this work. This research was

supported in part through computational resources provided by Research Institute for Information Technology, Kyushu University.

Appendix A. Supplementary data

Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.powtec.2023.118676.

18

Powder Technology 426 (2023) 118676

K. Washino et al.

[36] Z. Xie, Y. Shen, K. Takabatake, A. Yamaguchi, M. Sakai, Coarse-grained DEM

study of solids sedimentation in water, Powder Technol. 361 (2020) 21–32,

http://dx.doi.org/10.1016/j.powtec.2019.11.034.

[37] Y. Mori, M. Sakai, Visualization study on the coarse graining DEM for largescale gas–solid flow systems, Particuology 59 (2021) 24–33, http://dx.doi.org/

10.1016/j.partic.2020.07.001, URL https://linkinghub.elsevier.com/retrieve/pii/

S1674200120300791.

[38] Z. Jiang, K. Rai, T. Tsuji, K. Washino, T. Tanaka, J. Oshitani, Upscaled DEM-CFD

model for vibrated fluidized bed based on particle-scale similarities, Adv. Powder

Technol. 31 (2020) 4598–4618, http://dx.doi.org/10.1016/j.apt.2020.10.009.

[39] H. Nakamura, H. Takimoto, N. Kishida, S. Ohsaki, S. Watano, Coarse-grained

discrete element method for granular shear flow, Chem. Eng. J. Adv. 4 (2020)

http://dx.doi.org/10.1016/J.CEJA.2020.100050.

[40] M.J. de Munck, J.B. van Gelder, E.A. Peters, J.A. Kuipers, A detailed gas-solid

fluidized bed comparison study on CFD-DEM coarse-graining techniques, Chem.

Eng. Sci. 269 (2023) http://dx.doi.org/10.1016/j.ces.2022.118441.

[41] Y. Hu, E.L. Chan, T. Tsuji, T. Tanaka, K. Washino, Geometric similarity on

interparticle force evaluation for scaled-up DEM particles, Powder Technol. 404

(2022) 117483, http://dx.doi.org/10.1016/j.powtec.2022.117483, URL https://

linkinghub.elsevier.com/retrieve/pii/S0032591022003771.

[42] A.D. Renzo, E. Napolitano, F.D. Maio, Coarse-grain DEM modelling in fluidized

bed simulation: A review, Processes 9 (2021) 279, http://dx.doi.org/10.3390/

pr9020279, URL https://www.mdpi.com/2227-9717/9/2/279.

[43] E.L. Chan, K. Washino, Coarse grain model for DEM simulation of dense and

dynamic particle flow with liquid bridge forces, Chem. Eng. Res. Des. 132 (2018)

1060–1069, http://dx.doi.org/10.1016/j.cherd.2017.12.033.

[44] K. Chu, J. Chen, A. Yu, Applicability of a coarse-grained CFD–DEM model on

dense medium cyclone, Miner. Eng. 90 (2016) 43–54, http://dx.doi.org/10.1016/

j.mineng.2016.01.020.

[45] K. Chu, Y. Chen, L. Ji, Z. Zhou, A. Yu, J. Chen, Coarse-grained CFD-DEM study

of gas-solid flow in gas cyclone, Chem. Eng. Sci. 260 (2022) http://dx.doi.org/

10.1016/j.ces.2022.117906.

[46] K. Washino, E.L. Chan, T. Kaji, Y. Matsuno, T. Tanaka, On large scale CFD–DEM

simulation for gas–liquid–solid three-phase flows, Particuology 59 (2021) 2–15,

http://dx.doi.org/10.1016/j.partic.2020.05.006, URL https://linkinghub.elsevier.

com/retrieve/pii/S1674200120300754.

[47] C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker, Models, algorithms and

validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn. 12

(2012) 140–152, http://dx.doi.org/10.1504/PCFD.2012.047457.

[48] W.R. Hamilton, LXIX. <i>On quaternions; or on a new system of imaginaries

in algebra</i>, Lond. Edinb. Dublin Philos. Mag. J. Sci. 30 (1847) 458–461,

http://dx.doi.org/10.1080/14786444708645426, URL https://www.tandfonline.

com/doi/full/10.1080/14786444708645426.

[49] K.L. Johnson, K. Kendal, A.D. Roberts, Surface energy and the contact of elastic

solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 324 (1971) 301–313,

http://dx.doi.org/10.1098/rspa.1971.0141.

[50] E.J. Parteli, J. Schmidt, C. Blümel, K.E. Wirth, W. Peukert, T. Pöschel, Attractive

particle interaction forces and packing density of fine glass powders, Sci. Rep. 4

(2014) 1–7, http://dx.doi.org/10.1038/srep06227.

[51] C. Thornton, Interparticle sliding in the presence of adhesion, J. Phys. D: Appl.

Phys. 24 (1991) 1942–1946, http://dx.doi.org/10.1088/0022-3727/24/11/007.

[52] J.S. Marshall, Discrete-element modeling of particulate aerosol flows, J. Comput.

Phys. 228 (2009) 1541–1561, http://dx.doi.org/10.1016/j.jcp.2008.10.035.

[53] A. Podlozhnyuk, S. Pirker, C. Kloss, Efficient implementation of superquadric

particles in discrete element method within an open-source framework, Comput.

Part. Mech. 4 (2017) 101–118, http://dx.doi.org/10.1007/s40571-016-0131-6.

[54] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., New

York, Wiley, 2002.

[55] M. Alizadeh, A. Hassanpour, M. Pasha, M. Ghadiri, A. Bayly, The effect of particle

shape on predicted segregation in binary powder mixtures, Powder Technol. 319

(2017) 313–322, http://dx.doi.org/10.1016/j.powtec.2017.06.059.

[56] A.A. Boateng, P.V. Barr, Modelling of particle mixing and segregation in the

transverse plane of a rotary kiln, Chem. Eng. Sci. 51 (1996) 4167–4181, http:

//dx.doi.org/10.1016/0009-2509(96)00250-3.

[57] A.J. Morrison, I. Govender, A.N. Mainza, D.J. Parker, The shape and behaviour of

a granular bed in a rotating drum using Eulerian flow fields obtained from PEPT,

Chem. Eng. Sci. 152 (2016) 186–198, http://dx.doi.org/10.1016/j.ces.2016.06.

022.

[58] H.P. Kuo, P.C. Knight, D.J. Parker, Y. Tsuji, M.J. Adams, J.P. Seville, The

influence of DEM simulation parameters on the particle behaviour in a Vmixer, Chem. Eng. Sci. 57 (2002) 3621–3638, http://dx.doi.org/10.1016/S00092509(02)00086-6.

[14] S.-W. Chang, C.-S. Chen, A non-iterative derivation of the common plane for

contact detection of polyhedral blocks, Internat. J. Numer. Methods Engrg. 74

(2008) 734–753, http://dx.doi.org/10.1002/nme.2174.

[15] C. Boon, G. Houlsby, S. Utili, A new algorithm for contact detection between

convex polygonal and polyhedral particles in the discrete element method,

Comput. Geotech. 44 (2012) 73–82, http://dx.doi.org/10.1016/j.compgeo.2012.

03.012.

[16] Barr, Superquadrics and angle-preserving transformations, IEEE Comput. Graph.

Appl. 1 (1981) 11–23, http://dx.doi.org/10.1109/MCG.1981.1673799.

[17] J.R. Williams, A.P. Pentland, Superquadrics and modal dynamics for discrete

elements in interactive design, Eng. Comput. 9 (1992) 115–127, http://dx.doi.

org/10.1108/eb023852.

[18] P.W. Cleary, M.L. Sawley, DEM modelling of industrial granular flows: 3D case

studies and the effect of particle shape on hopper discharge, Appl. Math. Model.

26 (2002) 89–111, http://dx.doi.org/10.1016/S0307-904X(01)00050-6.

[19] N. Govender, D.N. Wilke, C.Y. Wu, R. Rajamani, J. Khinast, B.J. Glasser, Largescale GPU based DEM modeling of mixing using irregularly shaped particles,

Adv. Powder Technol. 29 (2018) 2476–2490, http://dx.doi.org/10.1016/j.apt.

2018.06.028.

[20] Y. He, T.J. Evans, A.B. Yu, R.Y. Yang, A GPU-based DEM for modelling large scale

powder compaction with wide size distributions, Powder Technol. 333 (2018)

219–228, http://dx.doi.org/10.1016/j.powtec.2018.04.034.

[21] Y. He, F. Muller, A. Hassanpour, A.E. Bayly, A CPU-GPU cross-platform coupled

CFD-DEM approach for complex particle-fluid flows, Chem. Eng. Sci. 223 (2020)

115712, http://dx.doi.org/10.1016/j.ces.2020.115712.

[22] T. Tsuji, K. Yabumoto, T. Tanaka, Spontaneous structures in three-dimensional

bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation, Powder

Technol. 184 (2008) 132–140, http://dx.doi.org/10.1016/j.powtec.2007.11.042,

cited By 92.

[23] H. Mio, R. Higuchi, W. Ishimaru, A. Shimosaka, Y. Shirakawa, J. Hidaka, Effect

of paddle rotational speed on particle mixing behavior in electrophotographic

system by using parallel discrete element method, Adv. Powder Technol. 20

(2009) 406–415, http://dx.doi.org/10.1016/j.apt.2009.05.002.

[24] J. Hærvig, U. Kleinhans, C. Wieland, H. Spliethoff, A.L. Jensen, K. Sørensen, T.J.

Condra, On the adhesive JKR contact and rolling models for reduced particle

stiffness discrete element simulations, Powder Technol. 319 (2017) 472–482,

http://dx.doi.org/10.1016/j.powtec.2017.07.006.

[25] T. Kobayashi, T. Tanaka, N. Shimada, T. Kawaguchi, DEM-CFD analysis of

fluidization behavior of Geldart Group A particles using a dynamic adhesion

force model, Powder Technol. 248 (2013) 143–152, http://dx.doi.org/10.1016/

j.powtec.2013.02.028.

[26] K. Washino, E.L. Chan, T. Tanaka, DEM with attraction forces using reduced

particle stiffness, Powder Technol. 325 (2018) 202–208, http://dx.doi.org/10.

1016/j.powtec.2017.11.024.

[27] S. Chen, W. Liu, S. Li, A fast adhesive discrete element method for random

packings of fine particles, Chem. Eng. Sci. 193 (2019) 336–345, http://dx.doi.

org/10.1016/j.ces.2018.09.026.

[28] Y. He, A. Hassanpour, M.A. Behjani, A.E. Bayly, A novel stiffness scaling

methodology for discrete element modelling of cohesive fine powders, Appl.

Math. Model. 90 (2021) 817–844, http://dx.doi.org/10.1016/j.apm.2020.08.062.

[29] M. Sakai, S. Koshizuka, Large-scale discrete element modeling in pneumatic

conveying, Chem. Eng. Sci. 64 (2009) 533–539, http://dx.doi.org/10.1016/j.ces.

2008.10.003.

[30] C. Bierwisch, T. Kraft, H. Riedel, M. Moseler, Three-dimensional discrete element

models for the granular statics and dynamics of powders in cavity filling, J.

Mech. Phys. Solids 57 (2009) 10–31.

[31] M. Sakai, H. Takahashi, C.C. Pain, J.P. Latham, J. Xiang, Study on a large-scale

discrete element model for fine particles in a fluidized bed, Adv. Powder Technol.

23 (2012) 673–681, http://dx.doi.org/10.1016/j.apt.2011.08.006.

[32] M. Sakai, M. Abe, Y. Shigeto, S. Mizutani, H. Takahashi, A. Viré, J.R. Percival,

J. Xiang, C.C. Pain, Verification and validation of a coarse grain model of

the DEM in a bubbling fluidized bed, Chem. Eng. J. 244 (2014) 33–43, http:

//dx.doi.org/10.1016/j.cej.2014.01.029.

[33] S.C. Thakur, J.Y. Ooi, H. Ahmadian, Scaling of discrete element model parameters for cohesionless and cohesive solid, Powder Technol. 293 (2016)

130–137.

[34] K. Takabatake, Y. Mori, J.G. Khinast, M. Sakai, Numerical investigation of a

coarse-grain discrete element method in solid mixing in a spouted bed, Chem.

Eng. J. 346 (2018) 416–426, http://dx.doi.org/10.1016/j.cej.2018.04.015.

[35] P.M. Widartiningsih, Y. Mori, K. Takabatake, C.Y. Wu, K. Yokoi, A. Yamaguchi,

M. Sakai, Coarse graining DEM simulations of a powder die-filling system,

Powder Technol. 371 (2020) 83–95, http://dx.doi.org/10.1016/j.powtec.2020.

05.063.

19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る