リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The interaction of ATP11C-b with ezrin contributes to its polarized localization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The interaction of ATP11C-b with ezrin contributes to its polarized localization

Inoue, Hiroki Takatsu, Hiroyuki Hamamoto, Asuka Takayama, Masahiro Nakabuchi, Riki Muranaka, Yumeka Yagi, Tsukasa Nakayama, Kazuhisa Shin, Hye-Won 京都大学 DOI:10.1242/jcs.258523

2021.10

概要

ATP11C, a member of the P4-ATPase family, translocates phosphatidylserine and phosphatidylethanolamine at the plasma membrane. We previously revealed that its C-terminal splice variant ATP11C-b exhibits polarized localization in motile cell lines, such as MDA-MB-231 and BaF3. In the present study, we found that the C-terminal cytoplasmic region of ATP11C-b interacts specifically with ezrin. Notably, the LLxY motif in the ATP11C-b C-terminal region is crucial for its interaction with ezrin as well as its polarized localization on the plasma membrane. A constitutively active, C-terminal phosphomimetic mutant of ezrin was colocalized with ATP11C-b in polarized motile cells. ATP11C-b was partially mislocalized in cells depleted of ezrin alone, and exhibited greater mislocalization in cells simultaneously depleted of family members, ezrin, radixin, and moesin (ERM), suggesting that ERM proteins, particularly ezrin, contribute to the polarized localization of ATP11C-b. Further, Atp11c knockout resulted in C-terminally phosphorylated ERM proteins mislocalization, which was restored by exogenous expression of ATP11C-b but not ATP11C-a. These observations together indicate that the polarized localizations of ATP11C-b and the active form of ezrin to the plasma membrane are interdependently stabilized.

この論文で使われている画像

参考文献

Algrain, M., Turunen, O., Vaheri, A., Louvard, D. and Arpin, M. (1993). Ezrin

contains cytoskeleton and membrane binding domains accounting for its

proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120, 129-139.

doi:10.1083/jcb.120.1.129

Alonso-Lebrero, J. L., Serrador, J. M., Dominguez-Jimé nez, C., Barreiro, O.,

Luque, A., del Pozo, M. A., Snapp, K., Kansas, G., Schwartz-Albiez, R.,

Furthmayr, H. et al. (2000). Polarization and interaction of adhesion molecules P-

Journal of Cell Science (2021) 134, jcs258523. doi:10.1242/jcs.258523

selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin

and ezrin in myeloid cells. Blood 95, 2413-2419. doi:10.1182/blood.V95.7.2413

Andersen, J. P., Vestergaard, A. L., Mikkelsen, S. A., Mogensen, L. S.,

Chalat, M. and Molday, R. S. (2016). P4-ATPases as phospholipid flippasesstructure, function, and enigmas. Front. Physiol. 7, 275. doi:10.3389/fphys.2016.

00275

Baumgartner, M., Sillman, A. L., Blackwood, E. M., Srivastava, J., Madson, N.,

Schilling, J. W., Wright, J. H. and Barber, D. L. (2006). The Nck-interacting

kinase phosphorylates ERM proteins for formation of lamellipodium by growth

factors. Proc. Natl. Acad. Sci. USA 103, 13391-13396. doi:10.1073/pnas.

0605950103

Bevers, E. M. and Williamson, P. L. (2016). Getting to the outer leaflet: physiology

of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96,

605-645. doi:10.1152/physrev.00020.2015

Bisaria, A., Hayer, A., Garbett, D., Cohen, D. and Meyer, T. (2020). Membraneproximal F-actin restricts local membrane protrusions and directs cell migration.

Science 368, 1205-1210. doi:10.1126/science.aay7794

Bretscher, A., Gary, R. and Berryman, M. (1995). Soluble ezrin purified

from placenta exists as stable monomers and elongated dimers with masked

C-terminal ezrin-radixin-moesin association domains. Biochemistry 34,

16830-16837. doi:10.1021/bi00051a034

Bretscher, A., Edwards, K. and Fehon, R. G. (2002). ERM proteins and merlin:

integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586-599. doi:10.1038/

nrm882

Brown, M. J., Nijhara, R., Hallam, J. A., Gignac, M., Yamada, K. M.,

Erlandsen, S. L., Delon, J., Kruhlak, M. and Shaw, S. (2003). Chemokine

stimulation of human peripheral blood T lymphocytes induces rapid

dephosphorylation of ERM proteins, which facilitates loss of microvilli and

polarization. Blood 102, 3890-3899. doi:10.1182/blood-2002-12-3807

Chen, E. J. H., Shaffer, M. H., Williamson, E. K., Huang, Y. and Burkhardt, J. K.

(2013). Ezrin and moesin are required for efficient T cell adhesion and homing

to lymphoid organs. PLoS ONE 8, e52368. doi:10.1371/journal.pone.0052368

Clucas, J. and Valderrama, F. (2014). ERM proteins in cancer progression. J. Cell

Sci. 127, 267-275. doi:10.1242/jcs.133108

Coleman, J. A., Quazi, F. and Molday, R. S. (2013). Mammalian P4-ATPases

and ABC transporters and their role in phospholipid transport. Biochim. Biophys.

Acta Mol. Cell Biol. Lipids 1831, 555-574. doi:10.1016/j.bbalip.2012.10.006

Das, A., Slaughter, B. D., Unruh, J. R., Bradford, W. D., Alexander, R.,

Rubinstein, B. and Li, R. (2012). Flippase-mediated phospholipid asymmetry

promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell

Biol. 14, 304-310. doi:10.1038/ncb2444

Fehon, R. G., McClatchey, A. I. and Bretscher, A. (2010). Organizing the cell

cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276-287. doi:10.

1038/nrm2866

Fievet, B. T., Gautreau, A., Roy, C., Del Maestro, L., Mangeat, P., Louvard, D.

and Arpin, M. (2004). Phosphoinositide binding and phosphorylation act

sequentially in the activation mechanism of ezrin. J. Cell Biol. 164, 653-659.

doi:10.1083/jcb.200307032

Fukunaga, R., Ishizaka-Ikeda, E. and Nagata, S. (1990). Purification and

characterization of the receptor for murine granulocyte colony-stimulating factor.

J. Biol. Chem. 265, 14008-14015. doi:10.1016/S0021-9258(18)77449-8

Gary, R. and Bretscher, A. (1995). Ezrin self-association involves binding of an

N-terminal domain to a normally masked C-terminal domain that includes the

F-actin binding site. Mol. Biol. Cell 6, 1061-1075. doi:10.1091/mbc.6.8.1061

Gautreau, A., Louvard, D. and Arpin, M. (2002). ERM proteins and NF2

tumor suppressor: the Yin and Yang of cortical actin organization and

cell growth signaling. Curr. Opin. Cell Biol. 14, 104-109. doi:10.1016/S09550674(01)00300-3

Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S., Tsukita, S. and Hakoshima,

T. (2003). Structural basis of adhesion-molecule recognition by ERM proteins

revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J. 22,

502-514. doi:10.1093/emboj/cdg039

Hao, J.-J., Liu, Y., Kruhlak, M., Debell, K. E., Rellahan, B. L. and Shaw, S. (2009).

Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from

lymphocyte membrane. J. Cell Biol. 184, 451-462. doi:10.1083/jcb.200807047

Heasman, S. J., Carlin, L. M., Cox, S., Ng, T. and Ridley, A. J. (2010). Coordinated

RhoA signaling at the leading edge and uropod is required for T cell

transendothelial migration. J. Cell Biol. 190, 553-563. doi:10.1083/jcb.201002067

Hind, L. E., Vincent, W. J. B. and Huttenlocher, A. (2016). Leading from the

back: the role of the uropod in neutrophil polarization and migration. Dev. Cell 38,

161-169. doi:10.1016/j.devcel.2016.06.031

Itoh, M., Yasunishi, A., Imamura, K., Kanamori-Katayama, M., Suzuki, H.,

Suzuki, M., Carninci, P., Kawai, J. and Hayashizaki, Y. (2006). Constructing

ORFeome resources with removable termination codons. BioTechniques 41,

44-50. doi:10.2144/000112209

Ivetic, A. and Ridley, A. J. (2004). Ezrin/radixin/moesin proteins and Rho GTPase

signalling in leucocytes. Immunology 112, 165-176. doi:10.1111/j.1365-2567.

2004.01882.x

14

Journal of Cell Science

RESEARCH ARTICLE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Kato, U., Inadome, H., Yamamoto, M., Emoto, K., Kobayashi, T. and Umeda, M.

(2013). Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins

in cell migration. J. Biol. Chem. 288, 4922-4934. doi:10.1074/jbc.M112.402701

Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R.,

Yamamoto, J., Sekine, M., Tsuritani, K., Wakaguri, H. et al. (2006).

Diversification of transcriptional modulation: large-scale identification and

characterization of putative alternative promoters of human genes. Genome

Res. 16, 55-65. doi:10.1101/gr.4039406

Lamb, R. F., Ozanne, B. W., Roy, C., McGarry, L., Stipp, C., Mangeat, P. and Jay,

D. G. (1997). Essential functions of ezrin in maintenance of cell shape and

lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7,

682-688. doi:10.1016/S0960-9822(06)00295-8

Lee, J.-H., Katakai, T., Hara, T., Gonda, H., Sugai, M. and Shimizu, A. (2004).

Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod

formation. J. Cell Biol. 167, 327-337. doi:10.1083/jcb.200403091

Li, Y., Harada, T., Juang, Y.-T., Kyttaris, V. C., Wang, Y., Zidanic, M., Tung, K.

and Tsokos, G. C. (2007). Phosphorylated ERM is responsible for increased

T cell polarization, adhesion, and migration in patients with systemic lupus

erythematosus. J. Immunol. 178, 1938-1947. doi:10.4049/jimmunol.178.3.1938

Liu, Y., Belkina, N. V., Park, C., Nambiar, R., Loughhead, S. M., Patino-Lopez,

G., Ben-Aissa, K., Hao, J.-J., Kruhlak, M. J., Qi, H. et al. (2012). Constitutively

active ezrin increases membrane tension, slows migration, and impedes

endothelial transmigration of lymphocytes in vivo in mice. Blood 119, 445-453.

doi:10.1182/blood-2011-07-368860

Liu, X., Yang, T., Suzuki, K., Tsukita, S., Ishii, M., Zhou, S., Wang, G., Cao, L.,

Qian, F., Taylor, S. et al. (2015). Moesin and myosin phosphatase confine

neutrophil orientation in a chemotactic gradient. J. Exp. Med. 212, 267-280.

doi:10.1084/jem.20140508

Lorentzen, A., Bamber, J., Sadok, A., Elson-Schwab, I. and Marshall, C. J.

(2011). An ezrin-rich, rigid uropod-like structure directs movement of amoeboid

blebbing cells. J. Cell Sci. 124, 1256-1267. doi:10.1242/jcs.074849

Martinelli, S., Chen, E. J. H., Clarke, F., Lyck, R., Affentranger, S.,

Burkhardt, J. K. and Niggli, V. (2013). Ezrin/Radixin/Moesin proteins and

flotillins cooperate to promote uropod formation in T cells. Front. Immunol. 4, 84.

doi:10.3389/fimmu.2013.00084

Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y. and Hakoshima, T.

(2008). Structural basis for CD44 recognition by ERM proteins. J. Biol. Chem. 283,

29602-29612. doi:10.1074/jbc.M803606200

Murate, M., Abe, M., Kasahara, K., Iwabuchi, K., Umeda, M. and Kobayashi, T.

(2015). Transbilayer distribution of lipids at nano scale. J. Cell Sci. 128,

1627-1638.

Naito, T., Takatsu, H., Miyano, R., Takada, N., Nakayama, K. and Shin, H.-W.

(2015). Phospholipid Flippase ATP10A translocates phosphatidylcholine and is

involved in plasma membrane dynamics. J. Biol. Chem. 290, 15004-15017.

doi:10.1074/jbc.M115.655191

Nakai, W., Kondo, Y., Saitoh, A., Naito, T., Nakayama, K. and Shin, H.-W. (2013).

ARF1 and ARF4 regulate recycling endosomal morphology and retrograde

transport from endosomes to the Golgi apparatus. Mol. Biol. Cell 24, 2570-2581.

doi:10.1091/mbc.e13-04-0197

Ng, T., Parsons, M., Hughes, W. E., Monypenny, J., Zicha, D., Gautreau, A.,

Arpin, M., Gschmeissner, S., Verveer, P. J., Bastiaens, P. I. et al. (2001). Ezrin

is a downstream effector of trafficking PKC-integrin complexes involved in the

control of cell motility. EMBO J. 20, 2723-2741. doi:10.1093/emboj/20.11.2723

Okamoto, S., Naito, T., Shigetomi, R., Kosugi, Y., Nakayama, K., Takatsu, H.

and Shin, H.-W. (2020). The N- or C-terminal cytoplasmic regions of P4-ATPases

determine their cellular localization. Mol. Biol. Cell 31, 2115-2124. doi:10.1091/

mbc.E20-04-0225

Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A.,

Hayashi, K., Sato, H., Nagai, K., et al. (2004). Complete sequencing

and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36, 40-45.

doi:10.1038/ng1285

Otsuki, T., Ota, T., Nishikawa, T., Hayashi, K., Suzuki, Y., Yamamoto, J.-I.,

Wakamatsu, A., Kimura, K., Sakamoto, K., Hatano, N. et al. (2005). Signal

sequence and keyword trap in silico for selection of full-length human cDNAs

encoding secretion or membrane proteins from oligo-capped cDNA libraries. DNA

Res. 12, 117-126. doi:10.1093/dnares/12.2.117

Palmgren, M. G. and Nissen, P. (2011). P-type ATPases. Annu. Rev. Biophys. 40,

243-266. doi:10.1146/annurev.biophys.093008.131331

Palmgren, M., Østerberg, J. T., Nintemann, S. J., Poulsen, L. R. and

Ló pez-Marqué s, R. L. (2019). Evolution and a revised nomenclature of P4

ATPases, a eukaryotic family of lipid flippases. Biochim. Biophys. Acta Biomembr.

1861, 1135-1151. doi:10.1016/j.bbamem.2019.02.006

Panicker, S. R., Yago, T., Shao, B. and McEver, R. P. (2020). Neutrophils lacking

ERM proteins polarize and crawl directionally but have decreased adhesion

strength. Blood Adv. 4, 3559-3571. doi:10.1182/bloodadvances.2020002423

Pearson, M. A., Reczek, D., Bretscher, A. and Karplus, P. A. (2000). Structure

of the ERM protein moesin reveals the FERM domain fold masked by an

extended actin binding tail domain. Cell 101, 259-270. doi:10.1016/S00928674(00)80836-3

Journal of Cell Science (2021) 134, jcs258523. doi:10.1242/jcs.258523

Phang, J. M., Harrop, S. J., Duff, A. P., Sokolova, A. V., Crossett, B., Walsh, J. C.,

Beckham, S. A., Nguyen, C. D., Davies, R. B., Glö ckner, C. et al. (2016).

Structural characterization suggests models for monomeric and dimeric forms of

full-length ezrin. Biochem. J. 473, 2763-2782. doi:10.1042/BCJ20160541

Roland, B. P., Naito, T., Best, J. T., Arnaiz-Yé pez, C., Takatsu, H., Yu, R. J.,

Shin, H.-W. and Graham, T. R. (2019). Yeast and human P4-ATPases

transport glycosphingolipids using conserved structural motifs. J. Biol. Chem.

294, 1794-1806. doi:10.1074/jbc.RA118.005876

Sá nchez-Madrid, F. and Serrador, J. M. (2009). Bringing up the rear: defining the

roles of the uropod. Nat. Rev. Mol. Cell Biol. 10, 353-359. doi:10.1038/nrm2680

Serrador, J. M., Alonso-Lebrero, J. L., del Pozo, M. A., Furthmayr, H.,

Schwartz-Albiez, R., Calvo, J., Lozano, F. and Sá nchez-Madrid, F. (1997).

Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3

and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell

Biol. 138, 1409-1423. doi:10.1083/jcb.138.6.1409

Serrador, J. M., Nieto, M., Alonso-Lebrero, J. L., del Pozo, M. A., Calvo, J.,

Furthmayr, H., Schwartz-Albiez, R., Lozano, F., Gonzá lez-Amaro, R.,

Sá nchez-Mateos, P. et al. (1998). CD43 interacts with moesin and ezrin and

regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts.

Blood 91, 4632-4644. doi:10.1182/blood.V91.12.4632

Serrador, J. M., Urzainqui, A., Alonso-Lebrero, J. L., Cabrero, J. R.,

Montoya, M. C., Vicente-Manzanares, M., Yá ñez-Mó , M. and Sá nchezMadrid, F. (2002). A juxta-membrane amino acid sequence of P-selectin

glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesindirected targeting at the trailing edge of migrating lymphocytes. Eur. J. Immunol.

32, 1560-1566. doi:10.1002/1521-4141(200206)32:6<1560::AID-IMMU1560>3.

0.CO;2-U

Shin, H.-W. and Takatsu, H. (2019). Substrates of P4-ATPases: beyond

aminophospholipids ( phosphatidylserine and phosphatidylethanolamine).

FASEB J. 33, 3087-3096. doi:10.1096/fj.201801873R

Shin, H.-W., Morinaga, N., Noda, M. and Nakayama, K. (2004). BIG2, a guanine

nucleotide exchange factor for ADP-ribosylation factors: its localization to

recycling endosomes and implication in the endosome integrity. Mol. Biol. Cell

15, 5283-5294. doi:10.1091/mbc.e04-05-0388

Simons, P. C., Pietromonaco, S. F., Reczek, D., Bretscher, A. and Elias, L.

(1998). C-terminal threonine phosphorylation activates ERM proteins to link the

cell’s cortical lipid bilayer to the cytoskeleton. Biochem. Biophys. Res. Commun.

253, 561-565. doi:10.1006/bbrc.1998.9823

Takada, N., Takatsu, H., Miyano, R., Nakayama, K. and Shin, H.-W. (2015).

ATP11C mutation is responsible for the defect in phosphatidylserine uptake in

UPS-1 cells. J. Lipid Res. 56, 2151-2157. doi:10.1194/jlr.M062547

Takai, Y., Kitano, K., Terawaki, S.-I., Maesaki, R. and Hakoshima, T. (2007).

Structural basis of PSGL-1 binding to ERM proteins. Genes Cells 12, 1329-1338.

doi:10.1111/j.1365-2443.2007.01137.x

Takatsu, H., Baba, K., Shima, T., Umino, H., Kato, U., Umeda, M., Nakayama, K.

and Shin, H.-W. (2011). ATP9B, a P4-ATPase (a Putative Aminophospholipid

Translocase), Localizes to the trans-Golgi Network in a CDC50 Proteinindependent Manner. J. Biol. Chem. 286, 38159-38167. doi:10.1074/jbc.M111.

281006

Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K. and

Shin, H.-W. (2014). Phospholipid flippase activities and substrate specificities of

human type IV P-type ATPases localized to the plasma membrane. J. Biol. Chem.

289, 33543-33556. doi:10.1074/jbc.M114.593012

Takatsu, H., Takayama, M., Naito, T., Takada, N., Tsumagari, K., Ishihama, Y.,

Nakayama, K. and Shin, H.-W. (2017). Phospholipid flippase ATP11C is

endocytosed and downregulated following Ca2+-mediated protein kinase C

activation. Nat. Commun. 8, 1423. doi:10.1038/s41467-017-01338-1

Takayama, M., Takatsu, H., Hamamoto, A., Inoue, H., Naito, T., Nakayama, K.

and Shin, H.-W. (2019). The cytoplasmic C-terminal region of the ATP11C variant

determines its localization at the polarized plasma membrane. J. Cell Sci. 132,

jcs231720. doi:10.1242/jcs.231720

Takeuchi, K., Sato, N., Kasahara, H., Funayama, N., Nagafuchi, A., Yonemura, S.,

Tsukita, S. and Tsukita, S. (1994). Perturbation of cell adhesion and microvilli

formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125,

1371-1384. doi:10.1083/jcb.125.6.1371

Tanaka, Y., Ono, N., Shima, T., Tanaka, G., Katoh, Y., Nakayama, K., Takatsu, H.

and Shin, H.-W. (2016). The phospholipid flippase ATP9A is required for the

recycling pathway from the endosomes to the plasma membrane. Mol. Biol. Cell

27, 3883-3893. doi:10.1091/mbc.E16-08-0586

Terawaki, S., Maesaki, R. and Hakoshima, T. (2006). Structural basis for NHERF

recognition by ERM proteins. Structure 14, 777-789. doi:10.1016/j.str.2006.01.

015

Thomas, S., Ritter, B., Verbich, D., Sanson, C., Bourbonnière, L.,

McKinney, R. A. and McPherson, P. S. (2009). Intersectin regulates dendritic

spine development and somatodendritic endocytosis but not synaptic vesicle

recycling in hippocampal neurons. J. Biol. Chem. 284, 12410-12419. doi:10.1074/

jbc.M809746200

Tsukita, S. and Yonemura, S. (1999). Cortical actin organization: lessons from

ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem. 274, 34507-34510. doi:10.

1074/jbc.274.49.34507

15

Journal of Cell Science

RESEARCH ARTICLE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Tsukita, S., Oishi, K., Sato, N., Sagara, J., Kawai, A. and Tsukita, S. (1994).

ERM family members as molecular linkers between the cell surface glycoprotein

CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391-401. doi:10.1083/jcb.

126.2.391

Turunen, O., Wahlströ m, T. and Vaheri, A. (1994). Ezrin has a COOH-terminal

actin-binding site that is conserved in the ezrin protein family. J. Cell Biol. 126,

1445-1453. doi:10.1083/jcb.126.6.1445

Valderrama, F., Thevapala, S. and Ridley, A. J. (2012). Radixin regulates cell

migration and cell-cell adhesion through Rac1. J. Cell Sci. 125, 3310-3319. doi:10.

1242/jcs.094383

Valignat, M.-P., Nègre, P., Cadra, S., Lellouch, A. C., Gallet, F., Hé non, S. and

Theodoly, O. (2014). Lymphocytes can self-steer passively with wind vane

uropods. Nat. Commun. 5, 5213. doi:10.1038/ncomms6213

Wehman, A. M., Poggioli, C., Schweinsberg, P., Grant, B. D. and Nance, J.

(2011). The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in

C. elegans embryos. Curr. Biol. 21, 1951-1959. doi:10.1016/j.cub.2011.10.040

Journal of Cell Science (2021) 134, jcs258523. doi:10.1242/jcs.258523

Wei, C., Wang, X., Zheng, M. and Cheng, H. (2012). Calcium gradients

underlying cell migration. Curr. Opin. Cell Biol. 24, 254-261. doi:10.1016/j.ceb.

2011.12.002

Welf, E. S., Miles, C. E., Huh, J., Sapoznik, E., Chi, J., Driscoll, M. K., Isogai, T.,

Noh, J., Weems, A. D., Pohlkamp, T. et al. (2020). Actin-membrane release

initiates cell protrusions. Dev. Cell 55, 723-736.e8. doi:10.1016/j.devcel.2020.11.

024

Yang, H. W., Collins, S. R. and Meyer, T. (2016). Locally excitable Cdc42 signals

steer cells during chemotaxis. Nat. Cell Biol. 18, 191-201. doi:10.1038/ncb3292

Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T., Tsukita, S. and

Tsukita, S. (1998). Ezrin/radixin/moesin (ERM) proteins bind to a positively

charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44,

CD43, and ICAM-2. J. Cell Biol. 140, 885-895. doi:10.1083/jcb.140.4.885

Zhang, Y., Werling, U. and Edelmann, W. (2012). SLiCE: a novel bacterial cell

extract-based DNA cloning method. Nucleic Acids Res. 40, e55. doi:10.1093/nar/

gkr1288

Journal of Cell Science

RESEARCH ARTICLE

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

Journal of Cell Science • Supplementary information

Fig. S1. Comparison of flippase activity between ATP11C-a, ATP11C-b, and ATP11C-b(3ala)-expressing

cells. (A) Parental MDA-MB-231 cells (-) and MDA-MB- 231 cells stably expressing ATP11C-a, ATP11C-b, or

ATP11C-b(3ala) were washed with flippase assay buffer and incubated with NBD-labelled lipids (NBD-PS for 5

min or NBE-PE for 15 min) at 15°C. After extraction with fatty acid-free BSA, the residual fluorescence

intensity of the cells was measured by flow cytometry. Uptake of NBD-labelled lipids is shown relative to

parental cells (-). Graphs ± SD display the average of three independent experiments. Variance was assessed by

comparison of all pairs using a Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant. (B)

MDA-MB- 231 cells stably expressing ATP11C-a, ATP11C-b, or ATP11C-b(3ala), and parental cells (-), were

lysed and subjected to immunoblotting using anti-H A, anti-ezrin, or anti-β-actin antibodies.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

Journal of Cell Science • Supplementary information

Fig. S2. Localization of endogenous ezrin in cells expressing ATP11C-a, ATP11C-b, or ATP11C-b(3ala). (A)

Parental MDA-MB-231 cells (-) and MDA-MB-231 cells stably expressing (B) ATP11C-a, (C) ATP11C-b, or (D)

ATP11C-b(3ala) were fixed and immunostained using anti-ezrin alone (A) or anti-ezrin and anti-HA antibodies (BD) followed by incubation with Alexa555-conjugated anti-mouse secondary antibody and Alexa488-conjugated

phalloidin (A) or Alexa488-conjugated anti-mouse and Cy3-conjugated anti-rat secondary antibodies (B-D).

Scale bars, 20 μm. Scale bars in enlarged images, 5 μm. (E) Schematic illustration of localization of endogenous

ezrin and each ATP11C isoform and corresponding mutants. Orange, endogenous ezrin; light blue, ATP11C-a;

pink, ATP11C-b. (F) MDA-MB-231 cells and (G) BaF3 cells stably co-expressing HA-tagged ATP11C-b and

FLAG-tagged ezrin(WT) or ezrin(T567A) (TA) were fixed and stained for HA and FLAG followed by

incubation with Cy3-conjugated anti-rat and DyLight649-conjugated anti-mouse secondary antibodies and

Alexa488-conjugated phalloidin (F), or Alexa488-conjugated anti-rat and DyLight649-conjugated anti-mouse

secondary antibody and Alexa555-conjugated phalloidin (G). Scale bars, 20 μm (F) and 5 μm (G).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. S3. Estimation of polarized localization of ezrin(WT) and the phosphomimetic ezrin mutant. (A)

A representative line-scan profile from the uropod to the front of a BaF3 cell expressing ezrin(WT). The line scan was

performed using the ZEN software. (B) The ratio of the peak fluorescence intensity of the uropod to front (i/ii) of a BaF3

cell expressing ezrin(WT) or ezrin(T567D) was calculated and expressed as scatter plots, as described in the legend for

Figure 6D. Individual dots represent the ratios in individual cells. Graphs ± SD display the average ratio from all analyzed

cells, and ‘n’ is the total number of analyzed cells from two independent experiments. Variance was assessed by

comparison between ezrin(WT) and ezrin(T567D) using a Student’s t-test. *** p < 0.0001.

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

Journal of Cell Science • Supplementary information

Fig. S4. Polarized localization of the phosphomimetic radixin and moesin mutants. (A, B) MDA-MB-231 cells

and (C, D) BaF3 cells stably expressing C-terminally FLAG-tagged radixin(WT), radixin(T564D), moesin(WT), or

moesin(T558D) were fixed and stained for FLAG followed by incubation with Alexa555-conjugated anti-mouse

secondary antibody and Alexa488-conjugated phalloidin. Scale bars, 20 μm, 5 μm in enlarged images (A, B), and 10

μm (C, D).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

Journal of Cell Science • Supplementary information

Fig. S5. Expression of exogenous ATP11C-a, ATP11C-b, and ATP11C-b(3ala) in Atp11c-knockout cells. (A)

Parental BaF3 cells (Con), Atp11c-knockout cells, and cells stably expressing CRISPR-resistant HA-tagged

ATP11C-a, ATP11C-b, or ATP11C-b(3ala) in the indicated Atp11c-knockout cell clone were lysed, and lysates

were subjected to SDS-PAGE and immunoblotting using anti-HA or anti-β-actin (as an internal control) antibodies.

(B) Cells in (A) were washed with flippase assay buffer and incubated with NBD-PS for 5 min, NBD-PE for 15

min, or NBD-PC for 15 min at 15°C. After extraction with fatty acid-free BSA, cellular fluorescence intensity was

measured by flow cytometry. Uptake of NBD-conjugated lipids is shown relative to parental cells (Con). Graphs ±

SD display the average of three independent experiments. A one-way ANOVA was performed to assess variance, and

comparisons to parental cells (Con) were made with Dunnett’s analysis. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

Journal of Cell Science • Supplementary information

Fig. S6. MPAct probe recognizes membrane proximal F-actin (Bisaria et al., 2020)

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. S7. Enrichment of MPAct at the uropod in BaF3 cells

Parental BaF3 cells (Con) and Atp11c-knockout cells stably expressing MPAct-mRuby3 were fixed and incubated with

Alexa488-conjugated phalloidin. Line-scan profiles of MPAct and phalloidin fluorescence from the uropod to the front of

these cells are shown. Different colors of lines represent different cells and ‘n’ is the total number of analyzed cells.

Journal of Cell Science • Supplementary information

J. Cell Sci.: doi:10.1242/jcs.258523: Supplementary information

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る