リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design of Binary Convolution Operation Circuit for Binarized Neural Networks Using Single-Flux-Quantum Circuit」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design of Binary Convolution Operation Circuit for Binarized Neural Networks Using Single-Flux-Quantum Circuit

Zongyuan Li Yuki Yamanashi 70467059 Nobuyuki Yoshikawa 70202398 横浜国立大学

2022.01.04

概要

We design a binary convolution operation circuit (BCOC) using a single-flux-quantum circuit for high-speed and energy-efficient neural network. The proposed circuit is used for binary convolution operations using a convolution kernel size of 3 × 3, which accelerates the forward propagation process of a binary neural network (BNN). We analyze the binary convolution process and propose a bisection method for optimization. The BCOC is designed with a gate-level pipeline architecture and uses the bisection method for reduced number of pipeline stages. Thus, the circuit area of the BCOC is reduced by approximately 50% compared with that of a BCOC without the bisection method. We design the BCOC with 3270 Josephson junctions using a 10 kA/cm^2 Nb process. The measurement results show that the BCOC can perform binary convolution operations with a kernel size of 3 × 3. Compared to a CMOS circuit, BCOC increases the power efficiency by 3.9 times. In future research, we will build up a library of BNNs based on SFQ circuits to simulate various BNN structures.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new

Josephson-junction technology for sub-terahertz-clock-frequency digital

systems,” IEEE Transactions on Applied Superconductivity, vol. 1, no. 1,

pp. 3–28, March 1991.

O. A. Mukhanov, “Energy-efficient single flux quantum technology,”

IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 760–769, Jun. 2011.

T. Kato et al., “60-GHz demonstration of an SFQ half-precision bit-serial

floating-point adder using 10 kA/cm2 Nb process,” IEEE 14th

International Superconductive Electronics Conference-Cambridge, MA,

USA, pp. 56-58, 2013.

I. Nagaoka, M. Tanaka, K. Inoue, and A. Fujimaki, “A 48GHz 5.6mW

gate-level-pipelined multiplier using single-flux quantum logic,” 2019

IEEE International Solid- State Circuits Conference, pp. 460–462. 2019

F. Ke et al., “Demonstration of a 47.8 GHz High-Speed FFT Processor

Using Single-Flux-Quantum Technology,” IEEE Trans. Appl. Supercond.,

vol. 31, no.5, Aug. 2021, Art. no. 1300905.

R. Kashima et al., “64-GHz Datapath Demonstration for Bit-Parallel SFQ

Microprocessors Based on a Gate-Level-Pipeline Structure,” IEEE Trans.

Appl. Supercond., vol. 31, no. 5 Aug. 2021, Art. no. 1301006.

K. Ishida et al., “SuperNPU: An Extremely Fast Neural Processing Unit

Using Superconducting Logic Devices,” 2020 53rd Annual IEEE/ACM

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

International Symposium on Microarchitecture (MICRO), pp. 58-72,

2020.

R. Andri, L. Cavigelli, D. Rossi, L. Benini, “YodaNN: An Ultra-Low

Power Convolutional Neural Network Accelerator Based on Binary

Weights,” IEEE Computer Society Annual Symposium on VLSI, pp. 236241, 2016.

M. Courbariaux et al., “Binarized Neural Networks: Training Deep

Neural Networks with Weights and Activations Constrained to +1 or -1.,”

arXiv, arXiv:1602.02830, 2016.

Y.S. Zhao et al., “Convolutional Integration based on Time and

Frequency Domain,” Communications Technology vol. 43, no, 11, pp.

165-168, 2010

M. Rastegari, et al. “XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks” Computer Vision – ECCV 2016, pp.

525–542, Oct. 2016.

S. Nagasawa et al., “Nb 9-layer fabrication process for superconducting

large-scale SFQ circuits and its process evaluation,” IEICE Trans. Electron., vol. E97-C, no. 3, pp. 132–140, Mar. 2014.

M. Hidaka and S. Nagasawa, “Fabrication Process for Superconducting

Circuits,” IEICE Trans. Electron., vol. E104-C, no. 9, pp. 405–410, Sep.

2021.

H. Akaike et al., “Design of single flux quantum cells for a 10-Nb-layer

process,” Physica C, vol. 469, no. 15–20, pp. 1670–1673, Oct. 2009.

Y. Yamanashi et al., “100 GHz demonstrations based on the single-flux

quantum cell library for the 10 kA/cm2Nb multi-layer process,” IEICE

Trans. Electron., vol. E93-C, no. 4, pp. 440–444, Apr. 2010.

S. Holmes, “Energy-Efficient Superconducting Computing—Power

Budgets and Requirements,” IEEE Trans. Appl. Supercond., vol. 23, no.

3, Jun. 2013, Art. no. 1701610.

D. Kirichenko, et al., “Zero static power dissipation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 776–779, Jun.

2011.

P. Guo, et al., “FBNA: A Fully Binarized Neural Network Accelerator,”

2018 28th International Conference on Field Programmable Logic and

Applications (FPL), pp.51–513, 2018

Y. Umuroglu, et al., “FINN: A Framework for Fast, Scalable Binarized

Neural Network Inference”, the 25th International Symposium on FieldProgrammable Gate Arrays, pp. 65-74, 2017.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る