リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of NO₂ sorption of Japanese cedar wood (Cryptomeria japonica)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of NO₂ sorption of Japanese cedar wood (Cryptomeria japonica)

Nakagawa, Miyuki 京都大学 DOI:10.14989/doctor.k23525

2021.09.24

概要

二酸化窒素(NO2)は環境汚染物質の一つであり、人の健康に悪影響を及ぼすことが知られている。NO2を除去する材料としては、これまで光触媒や活性炭などが利用されてきたが、限定的な使用条件や製造時の煩雑さといった課題がある。

一方、スギは戦後の拡大造林によって各地で植林され、日本を代表する樹種の一つとして知られている。スギ材の利用は古く、縄文時代にはすでに使用されており、家具や木工、建築材料として多用されてきた。この有用なスギ材に関し、最近になって NO2を収着除去する機能が備わっていることが明らかにされ、空気浄化材料としての更なる利用が期待されている。これまでの研究では、スギ材の組織構造や抽出成分、水分がNO2の収着除去に影響すると考えられているが、系統立てた検討は行われておらず、各影響因子の寄与の度合いなど未だ十分には解明されていない。また、高い効果を得るための条件を明らかにする研究も望まれている。そこで本研究では、スギ材の NO2収着除去機能について物理的、化学的に検討し、各影響因子の効果を明らかにするとともに、適切な利用条件を提案した。論文の主な内容は以下のとおりである。

第一章では、大気中のNO2の現状やその規制について整理するとともに、既存のNO2除去材料の特徴や問題点を明示した。また、日本におけるスギ材の利用の変遷をまとめた上で、NO2収着に関する研究の経緯と現状の課題を明らかにした。

第二章では、形状の異なる試験片に対して同一条件下で測定を行うために、JIS R 1701-1に準じた新しいNO2濃度測定評価システムを構築し、その概要を示した。この評価システムは、粉末から板状までの試験片が測定可能で、NO2と試験片との接触条件を変えることが出来る特徴を有している。また、一定温度下でNO2の流速を制御し、気流中の湿度も調整することができる。この装置を用い、粒度の異なる木粉や繊維方向厚さが異なる板状木口試験片、さらに厚さ1.5mmの円盤状木口試験片を準備して、NO2とスギ心材との接触面積が収着能に及ぼす影響を評価する実験をまず行った。円盤状木口試験片では、NO2を木口面から強制的に通過するようにした。収着量は、木粉の場合 0.25〜0.50mmの粒度で高く、板状木口試験片では仮道管長に相当する厚さ3mm以内の試験片で高い値が認められた。また、円盤状木口試験片でも高い収着量を示した。これらの結果から、仮道管に由来する組織構造とNO2との接触面積を大きくすることが収着能の向上に有効であることを明らかにした。

第三章では、スギ心材の乾燥処理に伴う抽出成分量の変化に着目し、天然乾燥処理や所定温度で人工乾燥処理した材を準備した。それぞれから円盤状木口試験片を作製し、含水率を0%と9%に調整後、通気試験を行った。また、溶媒抽出によって事前に抽出成分を除去した試験片についても測定した。さらに、抽出成分のGC/MS分析を行い、各成分の寄与についても検討した。その結果、天然乾燥処理による試験片が最も収着量が多く、乾燥処理温度が高くなるほど収着量の低下が認められた。また、試験片含水率0%の試験片よりも9%の試験片で高い収着量を示した。抽出成分を事前に除去した試験片では、乾燥処理条件や含水率に関わらず低い収着量を示した。さらに、抽出成分の分析の結果、乾燥処理温度が高くなるほど抽出成分量が低下することや、抽出成分の中でアビエタジエンが特に寄与している可能性を示した。以上のように、収着能は抽出成分量が多いほど高くなるとともに、水分の存在がさらに効果を高めることを明らかにした。

第四章では、前章の結果を踏まえて天然乾燥材から作製した円盤状木口試験片について、含水率を0〜16.5%の範囲で4条件調製し、水分の寄与を調べた。その結果、収着量は含水率0%では小さいが、水分が存在すると著しく大きくなることを示した。また、水分とNO2との反応によって一酸化窒素や硝酸が生成することを確認した。次に、試験片の含水率と抽出成分の有無が収着量におよぼす影響を経時的に測定し、測定初期の0〜12時間と測定後期の12〜24時間での各相互作用を検討した。その結果、測定初期での高い収着量は、主として水分と抽出成分の相互作用に依るところが大きく、測定後期の連続的な低い収着量は、主に水分との反応であることを理論的に明らかにした。

最後の結論では、本研究で得られた成果を要約するとともに、スギ材のNO2収着能を効果的に発現させる条件として(1)仮道管との接触面積を大きくするような形状にすること、(2)抽出成分の寄与を活かすために天然乾燥や低温乾燥を施した材を利用すること、(3)水分は気乾含水率程度に調整することが望ましいと、結論付けた。

この論文で使われている画像

参考文献

[1] WHO regional office Europe, “WHO guidelines for indoor air quality: selected pollutants,” 2010.

[2] H. Suzuki, Nitrogen oxides encyclopedia (in Japanese). Japan: Maruzen Co.,Ltd., 2008.

[3] J. Ministry of the Environment, “Monitoring results of air poluutants(in Japanese),” 2020, [Online]. Available: http://www.env.go.jp/press/files/jp/113643.pdf.

[4] E. E. Agency, Air quality in Europe - 2020 report, no. No 09/2020. 2020.

[5] United States Environmental Protection Agency, “Nitrogen Dioxide trends.” https://www.epa.gov/air-trends/nitrogen-dioxide-trends (accessed Apr. 04, 2021).

[6] L. Nomura research institute, “Regulation trend of atmospheric environment in Chine and India (in Japanese).”

[7] P. Ielpo et al., “Outdoor spatial distribution and indoor levels of NO2 and SO2 in a high environmental risk site of the South Italy,” Sci. Total Environ., vol. 648, no. 2, pp. 787–797, 2019, doi: 10.1016/j.scitotenv.2018.08.159.

[8] T. Yang et al., “Source contribution analysis of tropospheric NO2 based on two- dimensional MAX-DOAS measurements,” Atmos. Environ., vol. 210, no. 2, pp. 186– 197, 2019, doi: 10.1016/j.atmosenv.2019.04.058.

[9] H. Takashima, H. Irie, Y. Kanaya, and H. Akimoto, “Enhanced NO2 at Okinawa Island, Japan caused by rapid air-mass transport from China as observed by MAX- DOAS,” Atmos. Environ., vol. 45, no. 15, pp. 2593–2597, 2011, doi: 10.1016/j.atmosenv.2010.10.055.

[10] L. Duque et al., “Evaluating strategies to reduce urban air pollution,” Atmos. Environ., vol. 127, no. February, pp. 196–204, 2016, doi: 10.1016/j.atmosenv.2015.12.043.

[11] Indian Economic Service, “Ambient Air Quality Srandards in India.” http://www.arthapedia.in/index.php?title=Ambient_Air_Quality_Standards_in_India #:~:text=National Ambient Air Quality Standards,of Pollution) Act%2C 1981. (accessed Apr. 04, 2021).

[12] United States Environmental Protection Agency, “NAAQS Table.” https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed Apr. 04, 2021).

[13] “GB3095-201 national standard: Ambient air quality standards,” 2016.

[14] Y. Yoda, H. Takagi, J. Wakamatu, N. Otani, and M. Shima, “Short-term effects of air pollutants on pulmonary function in adolescent with a history of asthma or allergies,” Allergies, vol. 64, no. 2, pp. 128–135, 2015.

[15] H. Khreis, C. Kelly, J. Tate, R. Parslow, K. Lucas, and M. Nieuwenhuijsen, “Exposure to traffic-related air pollution and risk of development of childhood asthma : A systematic review and meta-analysis,” Environ. Int., vol. 100, pp. 1–31, 2017, doi: 10.1016/j.envint.2016.11.012.

[16] E. NISHIKAWA, “NO2 pollution effect to asthma prevalence shown by Ministry of the Environment ‘Reports of environmental health surveillance for air pollution’and by citizens’ initiative ‘SORADASU,’” Ningen to kankyo, vol. 45, no. 2, pp. 12–25, 2019, doi: 10.5793/kankyo.45.2_12.

[17] J. J. K. Jaakkola, M. Paunio, M. Virtanen, and O. P. Heinonen, “Low-level air pollution and upper respiratory infections in children,” Am. J. Public Health, vol. 81, no. 8, pp. 1060–1063, 1991, doi: 10.2105/AJPH.81.8.1060.

[18] G. A. Network, The Global Asthma Report 2018. 2018.

[19] Ministry of Health Labour and Welfare, “Current status of the allergic disease in Japan (in Japanese),” 2016. https://www.mhlw.go.jp/file/05-Shingikai-10905100- Kenkoukyoku-Ganshippeitaisakuka/0000111693.pdf (accessed Apr. 06, 2021).

[20] S. Bashkova and T. J. Bandosz, “The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon,” J. Colloid Interface Sci., vol. 333, no. 1, pp. 97–103, 2009, doi: 10.1016/j.jcis.2009.01.052.

[21] J. Kazmierczak, P. Nowicki, and R. Pietrzak, “Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation,” Adsorption, vol. 19, pp. 273–281, 2013, doi: 10.1007/s10450-012-9450-y.

[22] J. M, T. V, B. J.F, and E. P, “Interaction mechanism of NO2 with carbon black: effect of surface oxygen complexes,” J. Anal. Appl. Pyrolysis, vol. 72, no. 1, pp. 171–181, 2004.

[23] X. Gao, S. Liu, Y. Zhang, Z. Luo, M. Ni, and K. Cen, “Adsorption and reduction of NO2 over activated carbon at low temperature,” Fuel Process. Technol., vol. 92, no. 1, pp. 139–146, 2011, doi: 10.1016/j.fuproc.2010.09.017.

[24] B. Meriem, J. Mejdi, L. Lionel, and A. Fatima, “Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: Effect of porosity and surface chemistry,” Chem. Eng. J., vol. 253, no. 1, pp. 121–129, 2014.

[25] G. Imen, J. Mejdi, D. Sophie, L. Lionel, M. G. Camélia, and O. Abdelmottaleb, “Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature,” Comptes Rendus Chim., vol. 18, no. 1, pp. 63–74, 2015.

[26] F. Jacquot, V. Logie, J. F. Brilhac, and P. Gilot, “Kinetics of the oxidation of carbon black by NO2 influence of the presence of water and oxygen,” Carbon N. Y., vol. 40, no. 3, pp. 335–343, 2002, doi: 10.1016/S0008-6223(01)00103-8.

[27] P. Nowicki and R. Pietrzak, “Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions,” Bioresour. Technol., vol. 101, no. 15, pp. 5802–5807, 2010.

[28] R. Pietrzak, “Sawdust pellets from coniferous species as adsorbents for NO2 removal,” Bioresour. Technol., vol. 101, no. 3, pp. 907–913, 2010, doi: 10.1016/j.biortech.2009.09.017.

[29] K.-R. Justyna, G.-P. Barbara, N. Piotr, and P. Robert, “The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S,” Chem. Eng. J., vol. 269, no. 1, pp. 352–358, 2015.

[30] J. Che-ChinYu, V.-H. Nguyen, J. Lasek, and J. C.S.Wu, “Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement,” Appl. Catal. B Environ., vol. 219, pp. 391–400, 2017.

[31] N. Nhat Huy and B. Hsunling, “Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method,” J. Environ. Sci., vol. 26, no. 5, pp. 1180–1187, 2014.

[32] Y. Murata, “Air purification by photocatalytic concrete (in Japanese),” Concr. J., vol. 45, no. 5, pp. 131–135, 2007.

[33] Y. Murata, “The technology of NOx removal from air using photocatalysts (in Japanese),” J. Soc. Inorg. Mater., vol. 7, pp. 323–330, 2000.

[34] G. Hüsken, M. Hunger, and H. J. H. Brouwers, “Experimental study of photocatalytic concrete products for air purification,” Build. Environ., vol. 44, pp. 2463–2474, 2009.

[35] T. Fukumura, H. Tokushige, and M. Kawakami, “Physical properties and NOx remediation of cement mortar incorporating titanium dioxide powder (in Japanese),” J. Soc. Mater. Sci. Japan, vol. 55, no. 10, pp. 923–928, 2006.

[36] L. Yang, A. Hakki, F. Wang, and D. E. Macphee, “Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement,” Appl. Catal. B Environ., vol. 222, no. October 2017, pp. 200–208, 2018, doi: 10.1016/j.apcatb.2017.10.013.

[37] M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo, “Recent developments in titanium oxide-based photocatalysts,” Appl. Catal. A Gen., vol. 325, no. 1, pp. 1–14, 2007, doi: 10.1016/j.apcata.2007.03.013.

[38] J. C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, and J. L. Guzmán- Mar, “A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications,” Chem. Eng. J. Adv., vol. 5, p. 100070, 2021, doi: 10.1016/j.ceja.2020.100070.

[39] A. Sato, K. Yoshida, D. Fukushi, T. Rokutanda, and M. Esaki, “WO3 visible-light-responding photocatalyst to achieve a comfortable indoor environment (in Japanese),” Nihongazougakkaishi, vol. 55, no. 4, pp. 449–454, 2016.

[40] T. Ohira, “Improvement of Air Quality by Essential Oils from Woody Plants,” Mokuzai Gakkaishi, vol. 61, no. 3. pp. 226–231, 2015, doi: 10.2488/jwrs.61.226.

[41] T. Ohira, “Removal of nitorogen dioxide using woody plant constituents,” AROMA Res., vol. 15, no. 2, pp. 62–69, 2014.

[42] M. M. Ballari, Q. L. Yu, and H. J. H. Brouwers, “Experimental study of the NO and NO2 degradation by photocatalytically active concrete,” Catal. Today, vol. 161, no. 1, pp. 175–180, 2011, doi: 10.1016/j.cattod.2010.09.028.

[43] Y. Tsujino, M. Warashina, J. Morioka, N. Takenaka, H. Bandow, and Y. Maeda, “Wooden Materials Suitable for Storage Boxes of Cellar Walls to Remove Nitrogen Dioxide and Ozone in Ambient Air,” Global Environ. Res., vol. 4, no. 1. pp. 89–94, 2000.

[44] I. Abe, S. Iwasaki, Y. Iwata, H. Kominami, and Y. Kera, “Relationship between production method and adsorption property of charcoal,” Tanso, no. 185, pp. 277– 284, 1998.

[45] Forestry Agency, Ministry of Agriculture, and F. and F. G. of Japan, “Annual report on forest and forestry in Japan (in Japanese),” 2020.

[46] Y. Ishimaru, Y. Furuta, and M. Sugiyama, Wood science series 3: physics of wood. 2017.

[47] Y. Ueda, “Holocene fossil wood assemblages and wooden artifacts in the lowland along the Wakasa bay (Environment and Human Activities in the Island Arc) (in Japanese),” Bull. Natl. Museum Japanese Hist., vol. 81, pp. 387–397, 1990.

[48] Y. Hayashi, Useful tree illustration: wood edition (in Japanese). Tokyo, Japan: Seibundo-seikousya, 1969.

[49] M. Suzuki and S. Noshiro, “Forest Vegetation and Utilization of Wood during the Jomon Period in Japan (in Japanese),” Quat. Res., vol. 36, no. 5, pp. 329–342, 1997, doi: 10.4116/jaqua.36.329.

[50] Y. Tsujino et al., “Convenient method for monitoring carboxylic acid and aspects of its concentration in wooden storage cellars at museum,” Bull Nat Museum Jpn Hist., vol. 97, pp. 29–42, 2002.

[51] Y. Tsujino, T. Nishimura, H. Matsubara, N. Takenaka, and H. Ogawa, “NO2 purification and creation of the reducing atmosphere on the wood surface (in Japanese).,” Env. info Cent Osaka Prefect, no. 23, pp. 49–55, 2003.

[52] S. Kawai, Y. Tsujino, S. Fujita, and A. Yamamoto, “Humidity control and air purification with wood (in Japanese),” Clean technol., vol. 7, pp. 1–4, 2010.

[53] Y. Tsujino, “Purification ability of nitrogen dioxide, ozone and formaldehyde on the edge of Sugi wood. (in Japanese),” J. Japan Assoc. odor Environ., vol. 42, no. 1, pp. 8–16, 2011.

[54] Y. Tsujino and H. Imura, “practical experiment of NOx removal on cedar sawdust (in Japanese),” 2004.

[55] Y. Tsujino, M. Warashima, J. Morioka, N. Takenaka, H. Bandow, and Y. Maeda, “Wooden materials suitable for storage boxes or cellar walls to remove nitrogen dioxide and ozone in ambient air,” Glob Env. Res, vol. 4, no. 1, pp. 89–94, 2000.

[56] Japanese Industrial Standards, “JIS R 1701-1 Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for air purification performance of photocatalytic materials-part 1 removal of nitric oxide (in Japanese),” 2016.

[57] A. Mosca, O. Ohrman, J. Hedlund, I. Perdana, and D. Creaser, “NO2 and N2 sorption in MFI films with varying Si/AL and Na/AL ratios.,” Micropor Mesopor Mater., vol. 120, no. 3, pp. 195–205, 2009.

[58] A. L. Goodman, G. M. Underwood, and V. H. Grassian, “Heterogeneous Reaction of NC2: Characterization of Gas-Phase and Adsorbed Products from the Reaction, 2NO2(g) + H2O(a) → HONO(g) + HNO3(a) on Hydrated Silica Particles,” J. Phys. Chem. A, vol. 103, no. 36, pp. 7217–7223, 1999, doi: 10.1021/jp9910688.

[59] P. Nowicki, H. Wachowska, and R. Pietrzak, “Active carbons prepared by chemical activation of plum stones and their application in removal of NO2,” J. Hazard. Mater., vol. 181, no. 1–3, pp. 1088–1094, 2010.

[60] S. Kasaoka, T. Kosakam, Y. Hara, and E. Sasaoka, “Adsorption of mixture of nitrogen oxide and sulfur oxide on activated carbon (in Japanese),” Nihon kagakukaishi, vol. 11, pp. 1737–1741, 1977.

[61] M. Jeguirim, V. Tschamber, J. F. Brilhac, and P. Ehrburger, “Oxidation mechanism of carbon black by NO2: Effect of water vapour,” Fuel, vol. 84, no. 14–15, pp. 1949– 1956, 2005, doi: 10.1016/j.fuel.2005.03.026.

[62] N. Shirahama et al., “Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers,” Carbon N. Y., vol. 40, no. 14, pp. 2605–2611, 2002, doi: 10.1016/S0008-6223(02)00190-2.

[63] K. Kante, E. Deliyanni, and T. J. Bandosz, “Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 704–713, 2009, doi: 10.1016/j.jhazmat.2008.10.092.

[64] I. Masuda and M. Tamaki, “Behavior of nitrgen oxide in air (in Japanese),” Kankyou gijutsu, vol. 1, no. 5, pp. 350–354, 1972.

[65] T. Kagiya, T. Ogita, and H. Hatta, “Oxidation and reduction of nitrogen oxides in air (4): Photo chemical change of NO in air under mercury lamp irradiation (in Japanese),” Kankyou gijutsu, vol. 8, no. 3, pp. 306–311, 1979.

[66] O. Sawabe, K. Mori, and T. Takeuchi, “Micro-pore structure in cell wall of wood (in Japanese),” Mokuzai Gakkaishi, vol. 19, no. 2, pp. 55–62, 1973.

[67] M. Hasegawa, M. Takata, J. Matsumura, and K. Oda, “Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood,” Ultrasonics, vol. 51, no. 3, pp. 296–302, 2011, doi: 10.1016/j.ultras.2010.10.001.

[68] F. Ishiguri, S. Kasai, S. Yokota, K. Iizuka, and N. Yoshizawa, “Wood quality of sugi (Cryptomeria japonica) grown at four initial spacings,” IAWA J., vol. 26, no. 3, pp. 375–386, 2005.

[69] T. Tanaka, Y. Kawai, M. Sadanari, S. Shida, and T. Tsuchimoto, “Air permeability of sugi (Cryptomeria japonica) wood in the three directions,” Maderas Cienc. y Tecnol., vol. 17, no. 1, pp. 17–28, 2015, doi: 10.4067/S0718-221X2015005000002.

[70] K. Urano, N. Tanikawa, T. Masuda, and Y. Kobayashi, “Adsorption of nitrogen dioxide on activated carbon (in Japanese),” Nihon kagakukaishi, vol. 1, pp. 124–131, 1977.

[71] H. Kano, S. Shibutani, K. Hayashi, Y. Iijima, and S. Doi, “Effect of High- Temperature Drying Processes on Termite Resistance of Sugi (Cryptomeria japonica) Heartwood (in Japanese),” Mokuzai Gakkaishi, vol. 50, no. 2, pp. 91–98, 2004.

[72] S. SHIBUTANI, E. OBATAYA, K. HANATA, and S. DOI, “Quantitative changes of sugi (Cryptomeria japonica) heartwood extractives by a high-temperature drying process (in Japanese),” Wood Preserv., vol. 32, no. 5, pp. 196–202, 2006, doi: 10.5990/jwpa.32.196.

[73] T. Okuda et al., “Effect of heat drying treatment on extracts of Sugi (Cryptomeria japonica) board: Quantitative change of terpenes by moderate-temperature drying treatments (in Japanese),” mokuzai, vol. 63, no. 5, pp. 204–213, 2017.

[74] R. Perng Wu and T. Tajima, “Infuence of drying on chemical properties of wood. I. Effect of drying on chemical composition of wood. (in Japanese),” Mokuzai Gakkaishi, vol. 15, pp. 203–207, 1969.

[75] K. Kojiro, Y. Furuta, and Y. Ishimaru, “Influence of heating and drying history on micropores in dry wood,” J. Wood Sci., vol. 54, no. 3, pp. 202–207, 2008, doi: 10.1007/s10086-007-0943-3.

[76] K. Toba, T. Nakai, H. Yamamoto, M. Yoshida, and N. Nishio, “Effects of repeated wet-and-dry treatments on water and gas adsorption performance of wood (in Japanese),” Mokuzai Gakkaishi, vol. 59, no. 6, pp. 334–338, 2013.

[77] T. Nakatani and K. Kojiro, “Micropore structure of wood,” Wood inductry, vol. 66, no. 6, pp. 240–245, 2011.

[78] S. S. Cheng, H. Y. Lin, and S. T. Chang, “Chemical composition and antifungal activity of essential oils from different tissues of Japanese cedar (Cryptomeria japonica),” J. Agric. Food Chem., vol. 53, no. 3, pp. 614–619, 2005, doi: 10.1021/jf0484529.

[79] J. Miyakoshi, E. Matsubara, E. Narita, S. Koyama, Y. Shimizu, and S. Kawai, “Suppressive effects of extract of cedar wood on heat-induced expression of cellular heat shock protein,” Yakugaku Zasshi, vol. 138, no. 1, pp. 97–106, 2018, doi: 10.1248/yakushi.17-00165.

[80] T. Ohira, B. J. Park, Y. Kurosumi, and Y. Miyazaki, “Evaluation of dried-wood odors: Comparison between analytical and sensory data on odors from dried sugi (Cryptomeria japonica) wood,” J. Wood Sci., vol. 55, no. 2, pp. 144–148, 2009, doi: 10.1007/s10086-008-1001-5.

[81] T. Ohira, “Efficient utilization of condensed water discharged from wood-drying processes. (in Japanese),” J Jpn Assoc Odor Env., vol. 40, no. 6, pp. 400–411, 2009.

[82] K. Azuma et al., “Effects of inhalation of emissions from cedar timber on psychological and physiological factors in an indoor environment,” Environ. - MDPI, vol. 3, no. 37, pp. 1–13, 2016, doi: 10.3390/environments3040037.

[83] M. Fukuyama, “Wood and water. (in Japanese),” Zairyou, vol. 28, no. 311, pp. 102– 108, 1979.

[84] P. Nowicki, H. Wachowska, and R. Pietrzak, “Active carbons prepared by chemical activation of plum stones and their application in removal of NO2,” J. Hazard. Mater., vol. 181, no. 1–3, pp. 1088–1094, 2010.

[85] Japanese Industrial Standards, “JIS B 7920 Hygrometers−Test method,” 2000.

[86] E. OBATAYA and M. Norimoto, “Acoustic property of cane (Arundo donax L.) Used for reeds of woodwind instruments I: The relationships between vibrational properties and moisture contents of cane. (in Japanese),” Mokuzai Gakkaishi, vol. 41, no. 3, pp. 289–292, 1995.

[87] E. Matsubara and S. Kawai, “VOCs emitted from Japanese cedar (Cryptomeria japonica) interior walls induce physiological relaxation,” Build. Environ., vol. 72, pp. 125–130, 2014, doi: 10.1016/j.buildenv.2013.10.023.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る