リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of the length of vertebrobasilar arteries: A three-dimensional approach」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of the length of vertebrobasilar arteries: A three-dimensional approach

同道 頼子 広島大学

2020.08.27

概要

Neurovascular compression (NVC) syndrome is a disease entity
caused by arteries making direct contact with the brain stem and cranial nerves. The common culprit arteries are the superior cerebellar
artery (SCA) in trigeminal neuralgia, and the anterior inferior cerebellar
artery (AICA) or posterior inferior cerebellar artery (PICA) in facial
spasm [1]. The vertebrobasilar artery or AICA can compress the abducent nerve [2], while the vertebral artery (VA) can compress the
hypoglossal nerve [3], with these compressions resulting in palsy of the
corresponding nerves. NVC of the optic nerve is rare; however, it can be
a cause of visual impairment [4]. In such conditions, surgical decompression might be considered, and it has shown great efficacy [5,6].
The rostral ventrolateral medulla (RVLM) is a major topic regarding
NVC of the medulla oblongata, because the RVLM plays a role in the
regulation of blood pressure. Jannetta et al. ...

この論文で使われている画像

参考文献

[1] M. Campos-Benitez, A.M. Kaufmann, Neurovascular compression findings in

hemifacial spasm, J. Neurosurg. 109 (3) (2008) 416–420.

[2] T. Yamazaki, T. Yamamoto, T. Hatayama, A. Zaboronok, E. Ishikawa, H. Akutsu,

M. Matsuda, N. Kato, A. Matsumura, Abducent nerve palsy treated by microvascular

decompression: a case report and review of the literature, Acta Neurochir. 157 (10)

(2015) 1801–1805.

[3] Y. Kuroi, S. Tani, H. Ohbuchi, H. Kasuya, Microvascular decompression for hypoglossal nerve palsy secondary to vertebral artery compression: a case report and

review of the literature, Surg. Neurol. Int. 8 (2017) 74.

[4] D.M. Jacobson, J.J. Warner, S.K. Broste, Optic nerve contact and compression by

the carotid artery in asymptomatic patients, Am J. Ophthalmol. 123 (5) (1997)

677–683.

[5] C. Oesman, J.J. Mooij, Long-term follow-up of microvascular decompression for

trigeminal neuralgia, Skull Base 21 (5) (2011) 313–322.

[6] M. Sindou, P. Mercier, Microvascular decompression for hemifacial spasm: outcome

on spasm and complications. A review, Neuro-Chirurgie 64 (2) (2018) 106–116.

[7] P.J. Jannetta, R. Segal, S.K. Wolfson Jr., Neurogenic hypertension: etiology and

surgical treatment. I. Observations in 53 patients, Ann. Surg. 201 (3) (1985)

391–398.

[8] E.I. Levy, B. Clyde, M.R. McLaughlin, P.J. Jannetta, Microvascular decompression

of the left lateral medulla oblongata for severe refractory neurogenic hypertension,

Neurosurgery 43 (1) (1998) 1–6 (discussion 6-9).

[9] P. Legrady, E. Voros, D. Bajcsi, I. Fejes, P. Barzo, G. Abraham, Observations of

changes of blood pressure before and after neurosurgical decompression in hypertensive patients with different types of neurovascular compression of brain stem,

Kidney Blood Press. Res. 37 (4–5) (2013) 451–457.

[10] M. Sindou, M. Mahmoudi, A. Brinzeu, Hypertension of neurogenic origin: effect of

microvascular decompression of the CN IX-X root entry/exit zone and ventrolateral

medulla on blood pressure in a prospective series of 48 patients with hemifacial

spasm associated with essential hypertension, J. Neurosurg. 123 (6) (2015)

1405–1413.

[11] H. Geiger, R. Naraghi, H.P. Schobel, H. Frank, R.B. Sterzel, R. Fahlbusch, Decrease

of blood pressure by ventrolateral medullary decompression in essential hypertension, Lancet 352 (9126) (1998) 446–449.

[12] S. Morimoto, S. Sasaki, K. Takeda, S. Furuya, S. Naruse, K. Matsumoto, T. Higuchi,

M. Saito, M. Nakagawa, Decreases in blood pressure and sympathetic nerve activity

by microvascular decompression of the rostral ventrolateral medulla in essential

hypertension, Stroke 30 (8) (1999) 1707–1710.

[13] M.M. Sendeski, F.M. Consolim-Colombo, E.M. Krieger, C. Leite Cda, The spectrum

of magnetic resonance imaging findings in hypertension-related neurovascular

compression, Neuroradiology 48 (1) (2006) 21–25.

[14] D. Caldwell, ANSI/NCSL Z540.3:2006, Requirements for the calibration of measuring and test equipment, NCSLI Measure 1 (4) (2006) 26–30.

[15] S. Aoki, T. Ohtsuki, N. Hosomi, Y. Sueda, T. Kono, T. Yamawaki, M. Matsumoto,

Blood pressure variability and prognosis in acute ischemic stroke with vascular

compression on the rostral ventrolateral medulla (RVLM), Hypertens. Res. 34 (5)

(2011) 617–622.

[16] C.J. McGinnity, A. Hammers, D.A. Riano Barros, S.K. Luthra, P.A. Jones, W. Trigg,

C. Micallef, M.R. Symms, D.J. Brooks, M.J. Koepp, J.S. Duncan, Initial evaluation of

18F-GE-179, a putative PET tracer for activated N-methyl D-aspartate receptors, J.

Nucl. Med. 55 (3) (2014) 423–430.

[17] W. Osler, The principles and practice of medicine, Appleton, The Principles and

Practice of Medicine, 3rd Edition. Appleton, 3rd ed., 1898.

[18] M.H. Chowdhury, A. Nagai, H. Bokura, E. Nakamura, S. Kobayashi, S. Yamaguchi,

Age-related changes in white matter lesions, hippocampal atrophy, and cerebral

microbleeds in healthy subjects without major cerebrovascular risk factors, J.

Stroke Cerebrovasc. Dis. 20 (4) (2011) 302–309.

[19] Y. Li, W.J. Choi, W. Wei, S. Song, Q. Zhang, J. Liu, R.K. Wang, Aging-associated

changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography, Neurobiol. Aging 70 (2018) 148–159.

[20] O. Mirea, I. Donoiu, I.E. Plesea, Arterial aging: a brief review, Romanian J.

Downloaded for Anonymous User (n/a) at Kure Medical Center from ClinicalKey.jp by Elsevier on June 23, 2020.

For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.

-RXUQDORIWKH1HXURORJLFDO6FLHQFHV

Y. Dodo, et al.

tonometry measured pulse wave velocity, BMC Cardiovasc. Disord. 17 (1) (2017)

118.

[24] M. Nishikata, Y. Hirashima, T. Tomita, R. Futatsuya, Y. Horie, S. Endo,

Measurement of basilar artery bending and elongation by magnetic resonance

cerebral angiography: relationship to age, sex and vertebral artery dominance,

Arch. Gerontol. Geriatr. 38 (3) (2004) 251–259.

[25] J. Sugawara, K. Hayashi, T. Yokoi, H. Tanaka, Age-associated elongation of the

ascending aorta in adults, J. Am. Coll. Cardiol. Img. 1 (6) (2008) 739–748.

[26] https://www.e-stat.go.jp/dbview?sid=0003147022 (in Japanese).

Morphol. Embryol. 53 (3) (2012) 473–477.

[21] M. Lin, S.L. Lin, K.L. Wang, H.W. Kuo, T. Tak, Effect of aging on human circulatory

system in normotensive healthy subjects, Int. J. Angiol. 23 (4) (2014) 233–242.

[22] R. Dittrich, I. Nassenstein, S. Harms, D. Maintz, W. Heindel, G. Kuhlenbaumer,

E.B. Ringelstein, Arterial elongation (“redundancy”) is not a feature of spontaneous

cervical artery dissection, J. Neurol. 258 (2) (2011) 250–254.

[23] J.R. Weir-McCall, F. Khan, D.B. Cassidy, A. Thakur, J. Summersgill, S.Z. Matthew,

F. Adams, F. Dove, S.J. Gandy, H.M. Colhoun, J.J. Belch, J.G. Houston, Effects of

inaccuracies in arterial path length measurement on differences in MRI and

Downloaded for Anonymous User (n/a) at Kure Medical Center from ClinicalKey.jp by Elsevier on June 23, 2020.

For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.

...

参考文献をもっと見る