リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence on deep-sea ferromanganese nodules and planktonic foraminifera by ocean acidification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence on deep-sea ferromanganese nodules and planktonic foraminifera by ocean acidification

王, 権 東京大学 DOI:10.15083/0002001891

2021.10.04

概要

Ocean acidification caused by increased atmospheric carbon dioxide (CO2) will lead to enhanced acidity and lowered carbonate ion concentration in the marine environment. Most of the atmospheric CO2 absorbed by the oceans resides in relatively shallow waters; however, surface seawaters are slowly mixing with the intermediate and deep seawaters of the oceans. Over time, this acidification effect will spread to the deep oceans. Due to the lack of carbonate as a natural buffer to pH decrease, the deep-sea environments are more vulnerable to pH changes. The response of metal-rich deep-sea ferromanganese (Fe–Mn) nodules to predicted pH values have been investigated in Chapter 2. On the other hand, marine organisms such as planktonic foraminifera build their shells by using the carbonate ion from the seawater, the influence of seawater chemistry changes on planktonic foraminifera, Globigerinoides ruber (white), have been discussed in Chapter 3.

The experiments by using phosphate buffer solutions revealed that the release of element from deep-sea Fe–Mn nodules is not simply increased in response to pH decrease. The element behavior is mainly regulated by sorption-desorption processes which are primarily determined by changes in the acidity of the solutions and ion species in the solutions. Based on this result, we improved the assessment by introducing artificial seawaters and a CO2-induced pH regulation system. The pH changes caused by ocean acidification are simulated by adjusting the pH of the artificial seawaters through altering the partial pressure of CO2. The improved experiments revealed that the pH decrease caused by ocean acidification would promote the elements those exist as positively charged ions or complexes to release from the deep-sea sediments and restrain the elements those exist as negatively charged ions or complexes to be exchanged into the seawaters.

In order to investigate the response of the foraminiferal shells to ocean acidification, a piston core collected from above the lysocline in the East China Sea was used. The shells of planktonic foraminifera Globigerinoides ruber(white) were picked and performed weight/size measurements and X-ray microcomputed tomography (XMCT) measurements. The sizenormalized weight of Globigerinoides ruber (white) covaries well with atmospheric pCO2, which agrees with previous studies and manifest that the size-normalized weight of planktonic foraminiferal shells primarily reflects the changes of carbonate chemistry in surface seawaters. The high-resolution XMCT results helped to verify the post-depositional alteration and revealed that ocean acidification affects the shell volume (i.e., shell wall thickness) rather than shell density of planktonic foraminifera G. ruber (w).

この論文で使われている画像

参考文献

Aldridge, D., Beer, C. and Purdie, D. (2012). Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean. Biogeosciences 9(5):1725-1739.

Archer, D. and Maier-Reimer, E. (1994). Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367(6460):260.

Archer, D.E. (1996). An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochemical Cycles 10(1):159-174.

Awaji, S. (2009) Elucidation of the distribution and enrichment mechanism of rare metals in deep-sea mineral resources using a simple method for precise simultaneous determination of 61 elements by ICPMS. Master Dissertation, the University of Tokyo

Barker, S. and Elderfield, H. (2002). Foraminiferal calcification response to GlacialInterglacial changes in atmospheric CO2. Science 297(5582):833-836.

Barker, S., Kiefer, T. and Elderfield, H. (2004). Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19(3)

Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N. and Nesbitt, R.W. (2002). An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187(3):179-199.

Bé, A.W.H., Harrison, S.M. and Lott, L. (1973). Orbulina universa d'Orbigny in the Indian Ocean. Micropaleontology 19(2):150-192.

Beer, C.J., Schiebel, R. and Wilson, P.A. (2010). On methodologies for determining the sizenormalised weight of planktic foraminifera. Biogeosciences 7(7):2193.

Beer, C.J., Schiebel, R. and Wilson, P.A. (2010). Testing planktic foraminiferal shell weight as a surface water [CO32−] proxy using plankton net samples. Geology 38(2):103-106.

Berger, W.H. (1970). Planktonic foraminifera: selective solution and the lysocline. Marine Geology 8(2):111-138.

Bijma, J., Faber, W.W. and Hemleben, C. (1990). Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research 20(2):95-116.

Bijma, J., Hönisch, B. and Zeebe, R.E. (2002). Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacialage deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark. Geochemistry, Geophysics, Geosystems 3(11):1-7.

Bijma, J., Spero, H.J. and Lea, D.W. (1999). Reassessing Foraminiferal Stable Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental Results). In: Use of Proxies in Paleoceanography: Examples from the South Atlantic. Fischer, G. and Wefer, G. (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 489-512.

Boehm, H.P. (1971). Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society 52(0):264-275.

Broecker, W.S. and Clark, E. (2001). Glacial-to-Holocene redistribution of carbonate ion in the deep sea. Science 294(5549):2152-2155.

Broecker, W.S. and Takahashi, T. (1977). Neutralization of fossil fuel CO2 by marine calcium carbonate. In: The fate of fossil fuel CO2 in the oceans. Andersen, N.R. and Malahoff, A. (Eds.). Plenum Press, New York, USA. 213-242.

Brovkin, V., et al. (2002). Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model. Global Biogeochemical Cycles 16(4):86.

Brown, S.J. and Elderfield, H. (1996). Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg‐dependent dissolution. Paleoceanography 11(5):543-551.

Byrne, R.H. (2002). Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochemical Transactions 2(2):11-16.

Caldeira, K. and Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature 425(6956):365-365.

Caldeira, K. and Wickett, M.E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110(C9):C09S04.

Charewicz, W.A., Chaoyin, Z. and Chmielewski, T. (2001). The leaching behavior of ocean polymetallic nodules in chloride solutions. Physicochemical Problems of Mineral Processing 35:55-66.

de Moel, H., et al. (2009). Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?

De Orte, M.R., et al. (2014). Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Marine Environmental Research 96:136-144.

de Vernal, A., Bilodeau, G., Hillaire-Marcel, C. and Kassou, N. (1992). Quantitative assessment of carbonate dissolution in marine sediments from foraminifer linings vs. shell ratios: Davis Strait, northwest North Atlantic. Geology 20(6):527-530.

de Villiers, S. (2004). Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera. Marine 144(1):45-49.

Dickson, A.G. (1990). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers 37(5):755-766.

Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007). Determination of the pH of sea water using a glass/reference electrode cell. In: Guide to best practices for ocean CO2measurements. (Eds.). North Pacific Marine Science Organization,

Doney, S.C., Fabry, V.J., Feely, R.A. and Kleypas, J.A. (2009). Ocean Acidification: The other CO2 problem. Annual Review of Marine Science 1(1):169-192.

Doney, S.C. and Schimel, D.S. (2007). Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annual Review of Environment and Resources 32:31-66.

European Communities (EC) (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. http://ec.europa.eu/envir onment/water/water-drink/legislation_en.html. Accessed: 2018-10-29

Endrizzi, F. and Rao, L. (2014). Chemical Speciation of Uranium(VI) in Marine Environments: Complexation of Calcium and Magnesium Ions with [(UO2)(CO3)3] 4− and the Effect on the Extraction of Uranium from Seawater. Chemistry – A European Journal 20(44):14499-14506.

Falkowski, P., et al. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290(5490):291-296.

Feely, R.A., Orr, J., Fabry, V.J., Kleypas, J.A., Sabine, C.L. and Langdon, C. (2013). Present and future changes in seawater chemistry due to ocean acidification. In: Carbon Sequestration and Its Role in the Global Carbon Cycle. Mcpherson, B.J. and Sundquist, E.T. (Eds.). American Geophysical Union, 175-188.

Feely, R.A., et al. (2004). Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 305(5682):362-366.

Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237-240.

Foster, G.L. (2008). Seawater pH, pCO2 and [CO2− 3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters 271(1):254-266.

Gibbs, S.J., Stoll, H.M., Bown, P.R. and Bralower, T.J. (2010). Ocean acidification and surface water carbonate production across the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters 295(3-4):583-592.

Glasby, G.P. (1991). Mineralogy, geochemistry, and origin of Pacific red clays: A review. New Zealand Journal of Geology and Geophysics 34(2):167-176.

Glasby, G.P. (2006). Manganese: Predominant Role of Nodules and Crusts. In: Marine Geochemistry. Schulz, H. and Zabel, M. (Eds.). Springer Berlin Heidelberg, 371-427.

Gonzalez-Mora, B., Sierro, F.J. and Flores, J.A. (2008). Controls of shell calcification in planktonic foraminifers. Quaternary Science Reviews 27(9):956-961.

Görög, Á., Szinger, B., Tóth, E. and Viszkok, J. (2012). Methodology of the micro-computer tomography on foraminifera. Palaeontologia Electronica 15(1):15.

Grotti, M. and Frache, R. (2007). Direct determination of arsenic in sea-water by reaction cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 22(12):1481-1487.

Gupta, L.P., Kawahata, H., Takeuchi, M., Ohta, H. and Ono, Y. (2005). Temperature and pH Dependence of Some Metals Leaching from Fly Ash of Municipal Solid Waste. Resource

Geology 55(4):357-372. Hebbeln, D., Wefer, G. and Berger, W.H. (1990). Pleistocene dissolution fluctuations from apparent depth of deposition in core ERDC-127P, west-equatorial Pacific. Marine Geology 92(3-4):165-176.

Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews 51(0):1-14.

Hemleben, C., Spindler, M. and Anderson, O.R. (2012). Modern planktonic foraminifera. Springer

Ilyina, T. and Zeebe, R.E. (2012). Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification. Geophysical Research Letters 39(6):L06606.

IPCC (2013). The fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press: New York, USA

International Seabed Authority (ISA) (2018) Deep seabed minerals contractors. https:// www.isa.org.jm/deep-seabed-minerals-contractors. Accessed: 2018-10-01

Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., Honda, M.C. and Okazaki, Y. (2015). Observation of the dissolution process of Globigerina bulloides tests (planktic foraminifera) by X-ray microcomputed tomography. Paleoceanography 30(4):317-331.

Iwasaki, S., et al. (2018). Effect of seawater turbulence on formation of coral primary polyp skeletons. Coral Reefs 37(3):939-944.

Johnstone, H.J.H., Schulz, M., Barker, S. and Elderfield, H. (2010). Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Marine Micropaleontology 77(1):58-70.

Kanungo, S.B. and Das, R.P. (1988). Extraction of metals from manganese nodules of the Indian Ocean by leaching in aqueous solution of sulphur dioxide. Hydrometallurgy 20(2):135-146.

Kawahata, H., Nomura, R., Matsumoto, K. and Nishi, H. (2015). Linkage of deep sea rapid acidification process and extinction of benthic foraminifera in the deep sea at the Paleocene/Eocene transition. Island Arc 24(3):301-316.

Kester, D.R., Duedall, I.W., Connors, D.N. and Pytkowicz, R.M. (1967). Preparation of artificial seawater. Limnology and Oceanography 12(1):176-179.

Key, R.M., et al. (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18(4)

Kim, H.J., et al. (2013). Evaluation of Resuspended Sedimentsto Sinking Particles by Benthic Disturbance in the Clarion-Clipperton Nodule Fields. Marine Georesources & Geotechnology 33(2):160-166.

Kleypas, J.A., Buddemeier, R.W., Archer, D., Gattuso, J.-P., Langdon, C. and Opdyke, B.N. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118-120.

Kontakiotis, G., et al. (2017). Morphological recognition of Globigerinoides ruber morphotypes and their susceptibility to diagenetic alteration in the eastern Mediterranean Sea. Journal of Marine Systems 174:12-24.

Koschinsky, A. and Halbach, P. (1995). Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta 59(24):5113-5132.

Koschinsky, A. and Hein, J.R. (2003). Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology 198(3):331-351.

Kump, L.R., Bralower, T.J. and Ridgwell, A. (2009). Ocean acidification in deep time. Oceanography 22(4):94-107.

Langer, M.R. (2008). Assessing the contribution of foraminiferan protists to global ocean carbonate production. Journal of Eukaryotic Microbiology 55(3):163-169.

Le, J. and Shackleton, N.J. (1992). Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary. Paleoceanography and Paleoclimatology 7(1):21-42.

Leonhard, P., Pepelnik, R., Prange, A., Yamada, N. and Yamada, T. (2002). Analysis of diluted sea-water at the ng L−1 level using an ICP-MS with an octopole reaction cell. Journal of Analytical Atomic Spectrometry 17(3):189-196.

Lisiecki, L.E. and Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1)

Lohmann, G.P. (1995). A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10(3):445-457.

Lombard, F., da Rocha, R.E., Bijma, J. and Gattuso, J.P. (2010). Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences 7(1):247-255.

Lombard, F., Labeyrie, L., Michel, E., Spero, H.J. and Lea, D.W. (2009). Modelling the temperature dependent growth rates of planktic foraminifera. Marine Micropaleontology 70(1):1-7.

Manno, C., Morata, N. and Bellerby, R. (2012). Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biology 35(9):1311-1319.

Marshall, B.J., Thunell, R.C., Henehan, M.J., Astor, Y. and Wejnert, K.E. (2013). Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series. Paleoceanography 28(2):363-376.

Marshall, B.J., Thunell, R.C., Spero, H.J., Henehan, M.J., Lorenzoni, L. and Astor, Y. (2015).

Morphometric and stable isotopic differentiation of Orbulina universa morphotypes from the Cariaco Basin, Venezuela. Marine Micropaleontology 120:46-64.

Martin, W.R. and Sayles, F.L. (1996). CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochimica et Cosmochimica Acta 60(2):243-263.

McCurdy, E. and Woods, G. (2004). The application of collision/reaction cell inductively coupled plasma mass spectrometry to multi-element analysis in variable sample matrices, using He as a non-reactive cell gas. Journal of Analytical Atomic Spectrometry 19(5):607-615.

Mekik, F. and François, R. (2006). Tracing deep‐sea calcite dissolution: Agreement between the Globorotalia menardii fragmentation index and elemental ratios (Mg/Ca and Mg/Sr) in planktonic foraminifers. Paleoceanography 21(4)

Mekik, F. and Raterink, L. (2008). Effects of surface ocean conditions on deep‐sea calcite dissolution proxies in the tropical Pacific. Paleoceanography and Paleoclimatology 23(1):

Metzler, C.V., Wenkam, C.R. and Berger, W.H. (1982). Dissolution of foraminifera in the eastern equatorial Pacific; an in situ experiment. The Journal of Foraminiferal Research 12(4):362-368.

Millero, F.J. (2013). Chemical Oceanography. CRC press, New York

Millero, F.J., et al. (2002). Dissociation constants for carbonic acid determined from field measurements. Deep Sea Research Part I: Oceanographic Research Papers 49(10):1705-1723.

Millero, F.J., Woosley, R., Ditrolio, B. and Waters, J. (2009). Effect of ocean acidification on the speciationof metals in seawater. Oceanography 22(4):72.

Milliman, J.D. and Droxler, A.W. (1996). Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geologische Rundschau 85(3):496-504.

Milliman, J.D., Troy, P.J., Balch, W.M., Adams, A.K., Li, Y.H. and Mackenzie, F.T. (1999). Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Research Part I: Oceanographic Research Papers 46(10):1653-1669.

Moy, A.D., Howard, W.R., Bray, S.G. and Trull, T.W. (2009). Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2:276-280.

Naik, S.S. and Naidu, P.D. (2007). Calcite dissolution along a transect in the western tropical Indian Ocean: A multiproxy approach. Geochemistry, Geophysics, Geosystems 8(8)

Naik, S.S., Naidu, P.D., Govil, P. and Godad, S. (2010). Relationship between weights of planktonic foraminifer shell and surface water CO3= concentration during the Holocene and Last Glacial Period. Marine Geology 275(1):278-282.

National Oceanic and Atmospheric Administration (NOAA) (2018) Trends in atmospheric carbon dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_full.html.

Oebius, H.U., Becker, H.J., Rolinski, S. and Jankowski, J.A. (2001). Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep Sea Research Part II: Topical Studies in Oceanography 48(17–18):3453-3467.

Orr, J.C., et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681-686.

Osborne, E.B., et al. (2016). Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin.

Paleoceanography 31(8):1083-1102. Pälike, H., et al. (2012). A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609-615.

Parida, K., Satapathy, P.K. and Das, N. (1996). Studies on Indian Ocean Manganese Nodules: IV. Adsorption of Some Bivalent Heavy Metal Ions onto Ferromanganese Nodules. Journal of Colloid and Interface Science 181(2):456-462.

Park, K. (1966). Deep-Sea pH. Science 154(3756):1540-1542.

Peterson, M.N.A. (1966). Calcite: Rates of dissolution in a vertical profile in the Central Pacific. Science 154(3756):1542-1544.

Petit, J.-R., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429-436.

Raven, J., et al. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society

Reimer, P.J., et al. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0– 50,000 Years cal BP. Radiocarbon 55(4):1869-1887.

Ridgwell, A. and Zeebe, R.E. (2005). The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters 234(3-4):299-315.

Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E. and Morel, F.M.M. (2000).

Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364-367.

Roy, R.N., et al. (1993). The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44(2):249-267.

Russell, A.D., Hönisch, B., Spero, H.J. and Lea, D.W. (2004). Effects of seawater carbonateion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta 68(21):4347-4361.

Sabine, C.L., et al. (2004). The oceanic sink for anthropogenic CO2. Science 305(5682):367-371.

Schiebel, R. (2002). Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles 16(4):3-1-3-21.

Schiebel, R. and Hemleben, C. (2017). Planktic foraminifers in the modern ocean. Springer,

Schindler, P.W. (1975). Removal of trace metals from the oceans: a zero order model. Thalassia Jugosl. 11:101-111.

Schmidt, D.N., Renaud, S., Bollmann, J., Schiebel, R. and Thierstein, H.R. (2004). Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology 50(3):319-338.

Senanayake, G. (2011). Acid leaching of metals from deep-sea manganese nodules – A critical review of fundamentals and applications. Minerals Engineering 24(13):1379-1396.

Sharma, R. (2015). Environmental Issues of Deep-Sea Mining. Procedia Earth and Planetary Science 11:204-211.

Spero, H.J., Bijma, J., Lea, D.W. and Bemis, B.E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497-500.

Stumm, W., Huang, C.P. and Jenkins, S.R. (1970). Specific chemical interaction affecting stability of dispersed systems. Croatica Chemica Acta 42(2):223-245.

Stumm, W. and Morgan, J.J. (1996). Aquatic Chemistry, 3rd ed. Wiley, New York.

Terashima, S., Imai, N., Taniguchi, M., Okai, T. and Nishimura, A. (2002). The Preparation and Preliminary Characterisation of Four New Geological Survey of Japan Geochemical Reference Materials: Soils, JSO-1 and JSO-2; and Marine Sediments, JMS-1 and JMS-2. Geostandards Newsletter 26(1):85-94.

Terashima, S., Usui, A. and Imai, N. (1995). Two new GSJ geochemical reference samples: syenite Jsy-1 and manganese nodule JMn-1. Geostandards Newsletter 19(2):221-229.

Tessier, A., Campbell, P.G.C. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7):844-851.

Ujiié, Y. and Ujiié, H. (2006). Dynamic changes of the surface and intermediate waters in the Ryukyu Arc region during the past ~250,000 years: based on planktonic and benthic foraminiferal analyses of two IMAGES cores. Fossils 79:43-59.

Ujiié, Y., Asahi, H., Sagawa, T. and Bassinot, F. (2016). Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters. Paleoceanography 31(11):1498-1513.

United States Environmental Protection Agency (USEPA) (2018) 2018 Drinking Water Standards and Advisory Tables. https://www.epa.gov/dwstandardsregulations/2018- drinking-water-standards-and-advisory-tables.

Verlaan, P.A., Cronan, D.S. and Morgan, C.L. (2004). A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls. Progress in Oceanography 63(3):125-158.

Wang, Q., Kawahata, H., Manaka, T., Yamaoka, K. and Suzuki, A. (2017). Potential Influence of Ocean Acidification on Deep-Sea Fe–Mn Nodules: Results from Leaching Experiments. Aquatic Geochemistry 23(4):233-246.

Weinkauf, M., Moller, T., Koch, M.C. and Kucera, M. (2013). Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress. Biogeosciences 10(10):6639-6655.

Weinkauf, M.F., Kunze, J.G., Waniek, J.J. and Kučera, M. (2016). Seasonal variation in shell calcification of planktonic Foraminifera in the NE Atlantic reveals species-specific response to temperature, productivity, and optimum growth conditions. PLOS ONE 11(2):e0148363.

World Health Organization (WHO) (2011) Guidelines for drinking-water quality (4th Edition). http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/.

Yuan-Hui, L. (1991). Distribution patterns of the elements in the ocean: A synthesis. Geochimica et Cosmochimica Acta 55(11):3223-3240.

Zaman, M.I., Mustafa, S., Khan, S. and Xing, B. (2009). Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β-MnO2). Journal of Colloid and Interface Science 330(1):9-19.

Zeebe, R.E. and Wolf-Gladrow, D. (2001). CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, New York

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る