リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of contribution of Fe in aerosols from different sources to the surface ocean based on Fe stable isotope ratio」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of contribution of Fe in aerosols from different sources to the surface ocean based on Fe stable isotope ratio

栗栖, 美菜子 東京大学 DOI:10.15083/0002004730

2022.06.22

概要

Chapter 1. Introduction
Deficiency of dissolved iron (Fe) is one of the limiting factors of primary production in the ocean (Martin and Fitzwater, 1988). It is important to understand the Fe cycle in the surface ocean because Fe supply enhances primary production, which is related to the carbon cycle and climate change.

The main Fe sources to the surface ocean are (i) atmospheric aerosols, (ii) dissolution of Fe from coastal sediments, (iii) hydrothermal activity, and so on. Among them, Fe in natural aerosols (mineral dust), is particularly important (Jickells et al., 2005). The importance of natural aerosols is also suggested from correlations between atmospheric carbon dioxide concentrations and Fe supply to the ocean via transportation of natural aerosol in historical records of ice cores and marine sediments (e.g. Martínez-Garcia et al., 2009). In addition, Fe in combustion aerosols is also considered to be important due to its high fractional Fe solubility, although its emission amount is lower than that of natural aerosols (Sholkovitz et al., 2009; Ito et al., 2019). However, the relative contribution of natural and combustion Fe to the surface ocean remains unknown.

Iron stable isotope ratio (δ 56Fe (‰) = (56Fe/54Fe)sample/( 56Fe/54Fe)IRMM-014 – 1) is efficient to distinguish Fe sources. However, there have been few studies on δ 56Fe of combustion Fe. Majestic et al. (2009) analyzed Fe isotope ratios of two size-fractionated aerosols and reported that fine aerosol particles yielded δ 56Fe (as low as −0.6‰) lower than coarse particles (approximately 0.0‰) possibly due to the influence of combustion aerosols. However, it remains unclear why and how combustion Fe yields such low δ 56Fe.

Therefore, this thesis aimed to understand the followings by combining Fe isotope ratio with elemental concentration analysis, morphological observation, and Fe speciation:

1. To understand how and why combustion Fe yields low δ 56Fe values
2. To propose a representative Fe isotope ratio of combustion Fe that can be applied to the estimation of the contribution of Fe from different sources
3. To estimate the contribution of Fe from combustion Fe in marine aerosols and to understand the influence of combustion Fe on Fe fractional solubility of aerosols
4. To estimate the contribution of Fe from different sources in surface seawater

Chapter 2. Characteristics of Fe isotope ratios of size-fractionated aerosols collected in Higashi-Hiroshima (Kurisu et al., 2016a)
Aerosol sampling was conducted in summer and spring in Higashi Hiroshima as an example of a suburban environment in Japan. By collecting seven size-fractionated aerosols, I aimed to selectively collect combustion aerosols in fine particles and clarify δ 56Fe of combustion Fe. δ 56Fe of coarse particles (> 1 μm) was close to the crustal average (0.00±0.05‰, Beard et al., 2003). On the other hand, fine particles (< 1 μm) had δ 56Fe approximately 2.0‰ lower than the coarse particles. In addition, the soluble fraction of fine particles yielded as low as −3.9‰. Since (i) fine particles contained a large amount of trace elements emitted by anthropogenic activities, such as lead and zinc, and (ii) a larger fraction of Fe (hydr)oxides, possibly originated from combustion sources, were contained in fine particles, it was revealed that fine particles contained combustion Fe with low δ 56Fe, which was selectively extracted in the soluble fraction. By separating aerosols in fine size-fractions, it was clarified that combustion Fe has δ 56Fe much lower than that reported in Majestic et al. (2009).

Chapters 3 and 4. Estimation of Fe isotope ratio of combustion Fe collected near emission sources (Kurisu et al., 2016b; 2019a; 2019b)
Size-fractionated aerosol samples were collected in the vicinity of various anthropogenic sources to investigate the difference of δ 56Fe among various sources and to understand why combustion Fe yields low δ 56Fe. Focusing on combustion temperatures, I collected (i) aerosols emitted from vehicles, (ii) fly and bottom ashes in an incinerator, and (iii) aerosols emitted from a steel plant as hightemperature combustion sources in Chapter 3, and collected aerosols emitted by biomass burning as a low-temperature combustion source in Chapter 4.

Fine particles collected near the anthropogenic sources (near a steel plant and in a tunnel) contained Fe oxide nanoparticles emitted by high-temperature combustion processes. They yielded δ 56Fe 3−4‰ lower than that of natural Fe (0.0‰) or original materials before combustion. The results suggested that isotope fractionation occurred during the combustion processes. In addition, a good correlation between the inverse of Fe concentration and δ 56Fe of each size fraction indicates that the particles are mixing of two components with different δ 56Fe, that is, original materials with δ 56Fe close to 0‰ and combustion Fe with low δ 56Fe. Based on this correlation, δ 56Fe of combustion Fe was estimated to be −4.4±0.6‰. The value is distinguishable from Fe in natural environments, suggesting that the δ 56Fe can be used as a tracer of combustion Fe.

In the case of biomass burning, low δ 56Fe was not observed. The amount of evaporated Fe was too small because of relatively low combustion temperature (300−500 °C). In addition, Fe in the fine aerosol particles was mainly originated from fine soils suspended by the biomass burning.

Based on these results, it was suggested that the low δ 56Fe is applicable only for combustion Fe which experienced evaporation process under high-temperature conditions. Furthermore, lower δ 56Fe in fine particles corresponds to a larger fraction of Fe (hydr)oxides and higher fractional Fe solubilities, suggesting that the presence of combustion Fe is an important factor for controlling fractional Fe solubility.

Chapter 5. Estimation of contribution of combustion Fe in marine aerosols collected in the western Pacific
Based on the results above, I aimed (i) to estimate the contribution of combustion Fe in marine aerosols and (ii) to understand the influence of combustion Fe as a controlling factor of fractional Fe solubility from two size-fractionated aerosol samples collected during R/V Hakuho-Maru KH-13-7 and KH-14-3 cruises around the western Pacific.

Fine particles of marine aerosols collected near the Japan coast were originated from the Asian continent. The δ 56Fe values were 0.5−2‰ lower than those of coarse particles (0.0‰). A good correlation between the δ 56Fe and concentrations of some anthropogenic tracers suggested that the low δ 56Fe values were obtained due to the presence of combustion Fe mainly transported from the Asian continent. Furthermore, from the relationships among δ 56Fe, Fe species, and fractional Fe solubility, it was suggested that fractional Fe solubility was controlled mainly by the presence of combustion Fe and atmospheric processing during transportation. Mass balance calculation from δ 56Fe and fractional Fe solubility of natural and combustion Fe, up to 85% of soluble Fe in marine aerosols was of combustion origin. These results suggest that combustion Fe has a large contribution to marine aerosols and even to the surface ocean.

A calculation based on an atmospheric numerical model tended to overestimate the contribution of combustion Fe in the marine aerosols compared with the isotope-based estimation. Iron isotope data can contribute to a more accurate model prediction of the distribution of natural and combustion Fe in aerosols.

Chapter 6. Estimation of contribution of Fe from different sources in marine aerosols and surface seawater in the subarctic North Pacific
Aerosols and surface seawater were simultaneously collected during KH-17-3 cruise across the subarctic Pacific to evaluate (i) the contribution of combustion Fe in marine aerosols and (ii) the contribution of Fe from different sources to the surface ocean. I employed the double spike method for the isotope analysis because these samples contain extremely small amount of Fe.

Iron concentrations of aerosols were high only near the Japan coast, in which low δ 56Fe values were observed due to the presence of combustion Fe. The influence of combustion Fe was limited in the vicinity of the Japan coast in these aerosol samples.

δ 56Fe of dissolved Fe (D-Fe) of surface seawater was low (−0.2 to −0.7‰) in the western subarctic Pacific and near the Alaskan coast, whereas high (0.4 to 0.9‰) in the central and eastern subarctic Pacific. There was no correlation between δ 56Fe values of aerosols and surface seawater in this study, suggesting the importance of other Fe sources or Fe isotope fractionation due to biological activity.

From comparison of the concentration and δ 56Fe of D-Fe between the western (47 °N, 160 °E) and eastern area (50 ºN, 145 ºW), it was suggested that Fe with high concentration and low δ 56Fe (−1.36±0.03‰) in the intermediate depth (200−1000 m) in the western area was originated from dissolution of Fe from coastal sediments which was transported via North Pacific Intermediate Water (Nishioka and Obata, 2017). By a box model of the surface mixed layer in the western area assuming that Fe is supplied from aerosols and intermediate water, the contribution of aerosols was estimated to be 7−36%.

Although these samples were collected in summer and the contribution of combustion Fe was small, the contribution can be larger in winter and spring, when a larger amount of aerosol, including both natural and combustion Fe, is transported from the Asian continent to the open ocean in the Pacific.

Further understanding of the Fe cycles including combustion Fe contributes to a more accurate estimation of future climate change. Iron isotope ratio that is related to Fe sources can be an essential tool to understand such important issues.

この論文で使われている画像

参考文献

Abadie C., Lacan F., Radic A., Pradoux C. and Poitrasson F. (2017) Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. Proc. Natl. Acad. Sci. 114, 858–863.

Albarede F., Telouk P., Blichert-Toft J., Boyet M., Agranier A., Nelson B., Albarède F., Telouk P., Blichert-Toft J., Boyet M., Agranier A. and Nelson B. (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta 68, 2725–2744.

Allègre C., Manhes G. and Lewin E. (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 185, 49–69.

Andreae M. O. (1983) Soot carbon and excess fire potassium: long-range transport of combustion-derived aerosols. Science (80-. ). 220, 1148–1151.

Andreae M. O., Artaxo P., Fischer H., Freitas S. R., Gregoire J.-M., Hansel A., Hoor P., Kormann R., Krejci R., Lange L., Lelieveld J., Lindinger W., Longo K., Peters W., Reus M. De, Scheeren B., Silva Dias M. A. F., Storom J., van Velthoven P. F. J. and Williams J. (2001) Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys. Res. Lett. 28, 951–954.

Andreae M. O., Browell E. V., Garstang G. L., Harriss R. C., Hill G. F., Jacobs D. J., Pereira M. C., Sachse G. W., Setzer A. W., Silva Dias P. L., Talbot R. W., Torres A. L. and Wofsy S. C. (1988)

Biomass-burning emissions and associated haze layers over Amazonia. J. Geophys. Res. 93, 1509–1527.

Artaxo P., Martins J. V., Yamasoe M. A., Procópio A. S., Pauliquevis T. M., Andreae M. O., Guyon P., Gatti L. V. and Leal A. M. C. (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res. D Atmos. 107, 1–14.

Artaxo P., Storms H., Bruynseels F., Van Grieken R. and Maenhaut W. (1988) Composition and sources of aerosols from the Amazon Basin. J. Geophys. Res. 93, 1605–1615.

Atmospheric Environmental Information System. (http://atmosphericmonitoring.jp/pref/tochigi/index.html)

Baker A. R. and Jickells T. D. (2006) Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33, 1–4.

Banwart S., Davies S. and Stumm W. (1989) The role of oxalate in accelerating the reductive dissolution of hematite (α-Fe2O3) by ascorbate. Colloids and Surfaces 39, 303–309.

Barker A. V and Pilbeam D. J. (2007) Handbook of plant nutrition., CRC press.

Beard B. L., Johnson C. M., Von Damm K. L. and Poulson R. L. (2003a) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31, 629–632.

Beard B. L., Johnson C. M., Skulan J. L., Nealson K. H., Cox L. and Sun H. (2003b) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 195, 87–117.

Berger C. J. M., Lippiatt S. M., Lawrence M. G. and Bruland K. W. (2008) Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington. J. Geophys. Res. 113, 1–16.

Black J. R., John S. G. and Kavner A. (2014) Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating. Geochim. Cosmochim. Acta 124, 272–282.

Bladt H., Schmid J., Kireeva E. D., Popovicheva O. B., Perseantseva N. M., Timofeev M. a, Heister K., Uihlein J., Ivleva N. P. and Niessner R. (2012) Impact of Fe Content in Laboratory-Produced Soot Aerosol on its Composition, Structure, and Thermo-Chemical Properties. Aerosol Sci. Technol. 46,1337–1348. Von Blanckenburg F., Von Wirén N., Guelke M., Weiss D. J. and Bullen T. D. (2009) Fractionation of metal stable isotopes by higher plants. Elements 5, 375–380.

Boyd P. W., Jickells T., Law C. S., Blain S., Boyle E. A., Buesseler K. O., Coale K. H., Cullen J. J., de

Baar H. J. W. W., Follows M., Harvey M., Lancelot C., Levasseur M., Owens N. P. J. J., Pollard R., Rivkin R. B., Sarmiento J., Schoemann V., Smetacek V., Takeda S., Tsuda A., Turner S. and Watson A. J. (2007) Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science (80-. ). 315, 612–617.

Brantley S. L., Liermann L. J., Guynn R. L., Anbar A., Icopini G. A. and Barling J. (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta 68, 3189–3204.

Bruland K. W., Franks R. P., Knauer G. A. and Martin J. H. (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water. Anal. Chim. Acta 105, 233–245.

Buck C. S., Landing W. M., Resing J. A. and Lebon G. T. (2006) Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochemistry, Geophys. Geosystems 7, 1–21.

Chang F. Y. and Wey M. Y. (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J. Hazard. Mater. 138, 594–603.

Chen C. P., Cheng C. H., Huang Y. H., Chen C. Ten, Lai C. M., Menyailo O. V., Fan L. J. and Yang Y. W. (2014) Converting leguminous green manure into biochar: Changes in chemical composition and C and N mineralization. Geoderma 232–234, 581–588.

Chen H. and Grassian V. H. (2013) Iron dissolution of dust source materials during simulated acidic processing: The effect of sulfuric, acetic, and oxalic acids. Environ. Sci. Technol. 47, 10312–10321.

Chen H., Laskin A., Baltrusaitis J., Gorski C. A., Scherer M. M. and Grassian V. H. (2012) Coal fly ash as a source of iron in atmospheric dust. Environ. Sci. Technol. 46, 2112–2120.

Chen J., Li C., Ristovski Z., Milic A., Gu Y., Islam M. S., Wang S., Hao J., Zhang H., He C., Guo H., Fu H., Miljevic B., Morawska L., Thai P., LAM Y. F., Pereira G., Ding A., Huang X. and Dumka U.

C. (2017) A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–1034.

Chen Y., Shah N., Huggins Frank E. and Huffman Gerald P. (2004) Investigation of the microcharacteristics of PM sub 2 sub . sub 5 in residual oil fly ash by analytical transmission electron microscopy. Environ. Sci. Technol. 38, 6553–6560.

Chen Y., Street J. and Paytan A. (2006) Comparison between pure-water- and seawater-soluble nutrient concentrations of aerosols from the Gulf of Aqaba. Mar. Chem. 101, 141–152.

Chuang P. Y., Duvall R. M., Shafer M. M. and Schauer J. J. (2005) The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys. Res. Lett. 32, 1–4.

Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Quéré C. Le, Myneni R. B., Piao S. and Thornton P. (2013) Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge University Press, 465-570.

Conway T. M., Hamilton D. S., Shelley R. U., Aguilar-Islas A. M., Landing W. M., Mahowald N. M. and John S. G. (2019) Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10, 1–10.

Conway T. M. and John S. G. (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215.

Conway T. M. and John S. G. (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean – Insights from stable isotopes. Geochim. Cosmochim. Acta 164, 262–283.

Conway T. M., Rosenberg A. D., Adkins J. F. and John S. G. (2013) A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52.

Cornell R. M. and Schwertmann U. (2003) The iron oxides: Structure, properties, reactions, occurences and uses., Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

Croot P. L., Streu P. and Baker A. R. (2004) Short residence time for iron in surface seawater impacted by atmospheric dry deposition from Saharan dust events. Geophys. Res. Lett. 31, 1–4.

Crusius J., Schroth A. W., Resing J. A., Cullen J. and Campbell R. W. (2017) Seasonal and spatial variabilities in northern Gulf of Alaska surface water iron concentrations driven by shelf sediment resuspension, glacial meltwater, a Yakutat eddy, and dust. Global Biogeochem. Cycles 31, 942–960.

Cuiping L., Chuangzhi W., Yanyongjie and Haitao H. (2004) Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy 27, 119–130.

Das B., Prakash S., Reddy P. S. R. and Misra V. N. (2007) An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling 50, 40–57.

Dauphas N., Janney P. E., Mendybaev R. A., Wadhwa M., Richter F. M., Davis A. M., Van Zuilen M., Hines R. and Foley C. N. (2004) Hromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects. Anal. Chem. 76, 5855–5863.

Dauphas N., John S. G. and Rouxel O. (2017) Iron isotope systematics. Rev. Mineral. Geochemistry 82,415–510.

Dauphas N. and Rouxel O. (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrom. Rev. 25, 515–520.

Deng C., Zhuang G., Huang K., Li J., Zhang R., Wang Q., Liu T., Sun Y., Guo Z., Fu J. S. and Wang Z. (2011) Chemical characterization of aerosols at the summit of Mountain Tai in Central East China. Atmos. Chem. Phys. 11, 7319–7332.

Duce R. A., Liss P. S., Merrill J. T., Atlas E. L., Buat‐Menard P., Hicks B. B., Miller J. M., Prospero J. M., Arimoto R., Church T. M., Ellis W., Galloway J. N., Hansen L., Jickells T. D., Knap A. H., Reinhardt K. H., Schneider B., Soudine A., Tokos J. J., Tsunogai S., Wollast R. and Zhou M. (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5,193–259.

Duce R. A. and Tindale N. W. (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36, 1715–1726.

Duce R. a, Arimoto R., Ray B. J., Unni C. K. and Harder P. J. (1983) Atmospheric trace elements at

Enewetak Atoll: 1. Concentrations, sources, and temporal variability. J. Geophys. Res. Ocean. 88, 5321–5342.

Echalar F., Gaudichet A., Cachier H. and Artaxo P. (1995) Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. 22, 3039–3042.

Elburg M., Vroon P., van der Wagt B. and Tchalikian A. (2005) Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chem. Geol. 223, 196–207.

Ellwood M. J., Hutchins D. A., Lohan M. C., Milne A., Nasemann P., Nodder S. D., Sander S. G., Strzepek R., Wilhelm S. W. and Boyd P. W. (2015) Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proc. Natl. Acad. Sci. 112, E15–E20.

Falkowski P. G., Barber R. T. and Smetacek V. (1998) Biogeochemical controls and feedbacks on ocean primary production. Science (80-. ). 281, 200–206.

Fantle M. S. and DePaolo D. J. (2004) Iron isotopic fractionation during continental weathering. Earth Planet. Sci. Lett. 228, 547–562.

Field C. B., Behrenfeld M. J., Randerson J. T. and Falkowski P. (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science (80-. ). 281, 237–240.

Fitzsimmons J. N., John S. G., Marsay C. M., Hoffman C. L., Nicholas S. L., Toner B. M., German C. R. and Sherrell R. M. (2017) Iron persistence in a distal hydrothermal plume supported by dissolvedparticulate exchange. Nat. Geosci. 10, 195–201.

Flament P., Mattielli N., Aimoz L., Choël M., Deboudt K., de Jong J., Rimetz-Planchon J. and Weis D. (2008) Iron isotopic fractionation in industrial emissions and urban aerosols. Chemosphere 73,1793–8.

Fu H., Lin J., Shang G., Dong W., Grassian V. H., Carmichael G. R., Li Y. and Chen J. (2012) Solubility of iron from combustion source particles in acidic media linked to iron speciation. Environ. Sci. Technol. 46, 11119–11127.

Fung I. Y., Meyn S. K., Tegen I., Doney S. C., John J. G. and Bishop J. K. B. (2000) Iron supply and demand in the upper ocean. Global Biogeochem. Cycles 14, 281. Gietl J. K., Lawrence R., Thorpe A. J. and Harrison R. M. (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 44, 141–146.

Gledhill M. and van den Berg C. M. G. (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem. 47, 41–54.

Gledhill M. and Buck K. N. (2012) The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3, 1–17.

Glotfelty T., Zhang Y., Karamchandani P. and Streets D. G. (2016) Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios. Atmos. Environ. 139, 176–191.

Gottschalk J., Battaglia G., Fischer H., Frölicher T. L., Jaccard S. L., Jeltsch-Thömmes A., Joos F., Köhler P., Meissner K. J., Menviel L., Nehrbass-Ahles C., Schmitt J., Schmittner A., Skinner L. C. and Stocker T. F. (2019) Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev. 220, 30–74.

Guelke M. and Von Blanckenburg F. (2007) Fractionation of stable iron isotopes in higher plants. Environ. Sci. Technol. 41, 1896–1901.

Guézennec A. G., Huber J. C., Patisson F., Sessiecq P., Birat J. P. and Ablitzer D. (2004) Dust formation by bubble-burst phenomenon at the surface of a liquid steel bath. 44, 1328–1333.

Guieu C., Bonnet S., Wagener T. and Loÿe-Pilot M. D. (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, 1–5.

Hayes C. T., Fitzsimmons J. N., Boyle E. A., McGee D., Anderson R. F., Weisend R. and Morton P. L. (2015) Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 169, 1–16.

Henderson A. W., Campbell T. T. and Block F. E. (1972) Dechlorination of ferric chloride with oxygen. Metall. Trans. 3, 2579–2583.

Hirabayashi M. and Matsuo M. (2001) Characterization of iron in airborne particulate matter by X-ray absorption fine structure technique. Anal. Sci 17, i1581–i1584.

Hoesly R. M., Smith S. J., Feng L., Klimont Z., Janssens-Maenhout G., Pitkanen T., Seibert J. J., Vu L., Andres R. J., Bolt R. M., Bond T. C., Dawidowski L., Kholod N., Kurokawa J. I., Li M., Liu L., Lu Z., Moura M. C. P., O’Rourke P. R. and Zhang Q. (2018) Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408.

Hoffmann P., Dedik A. N., Ensling J., Weinbruch S., Weber S., Sinner T., Gütlich P. and Ortner H. M. (1996) Speciation of iron in atmospheric aerosol samples. J. Aerosol Sci. 27, 325–337.

Homoky W. B., Severmann S., Mills R. A., Statham P. J. and Fones G. R. (2009) Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: Evidence from continental shelf and deep-sea sediments. Geology 37, 751–754.

Hsu S. C., Wong G. T. F., Gong G. C., Shiah F. K., Huang Y. T., Kao S. J., Tsai F., Candice Lung S. C., Lin F. J., Lin I. I., Hung C. C. and Tseng C. M. (2010) Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar. Chem. 120, 116–127.

Huang J., Mendoza B., Daniel J. S., Nielsen C. J., Rotstayn L. and Wild O. (2013) Anthropogenic and natural radiative forcing. Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 9781107057, 659–740.

Itai T., Takahashi Y., Uruga T., Tanida H. and Iida A. (2008) Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure. Appl. Geochemistry 23, 2667–2675.

Ito A. (2015) Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environ. Sci. Technol. Lett. 2, 70–75.

Ito A. (2013) Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean. Global Biogeochem. Cycles 27, 1–10.

Ito A., Lin G. and Penner J. E. (2018) Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci. Rep. 8, 1–11.

Ito A., Myriokefalitakis S., Kanakidou M., Mahowald N. M., Scanza R. A., Hamilton D. S., Baker A. R., Jickells T., Sarin M., Bikkina S., Gao Y., Shelley R. U., Buck C. S., Landing W. M., Bowie A. R., Perron M. M. G., Guieu C., Meskhidze N., Johnson M. S., Feng Y., Kok J. F., Nenes A. and Duce R. A. (2019) Pyrogenic iron: The missing link to high iron solubility in aerosols. Sci. Adv. 5, 13–15.

Ito A. and Shi Z. (2016) Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos. Chem. Phys. 16, 85–99. Japan Meteorological Agency (www.jma.go.jp/jp/yoho/)

Jickells T. D. (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science (80-. ). 308, 67–71.

John S. G. (2012) Optimizing sample and spike concentrations for isotopic analysis by double-spike ICPMS. J. Anal. At. Spectrom. 27, 2123–2131.

John S. G. and Adkins J. F. (2010) Analysis of dissolved iron isotopes in seawater. Mar. Chem. 119, 65–76.

John S. G., Mendez J., Moffett J. and Adkins J. (2012) The flux of iron and iron isotopes from San Pedro Basin sediments. Geochim. Cosmochim. Acta 93, 14–29.

Johnson C. M., Beard B. L., Beukes N. J., Klein C. and O’Leary J. M. (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib. to Mineral. Petrol. 144, 523–547. de Jong J., Schoemann V., Tison J. L., Becquevort S., Masson F., Lannuzel D., Petit J., Chou L., Weis D. and Mattielli N. (2007) Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Anal. Chim. Acta 589, 105–119.

Journet E., Balkanski Y. and Harrison S. P. (2014) A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 14, 3801–3816.

Kanakidou M., Myriokefalitakis S. and Tsigaridis K. (2018) Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13.

Kanayama S., Yabuki S., Yanagisawa F. and Motoyama R. (2002) The chemical and strontium isotope composition of atmospheric aerosols over Japan: The contribution of long-range-transported Asian dust (Kosa). Atmos. Environ. 36, 5159–5175.

Keene W. C., Pszenny A. A. P., Galloway J. N. and Hawley M. E. (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 91, 6647.

Keiluweit M., Nico P. S. and Johnson M. G. (2010) Dynamic molecular structure of plant biomassderived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253.

Kennedy I. M. (2007) The health effects of combustion-generated aerosols. Proc. Combust. Inst. 31 II, 2757–2770.

Kiczka M., Wiederhold J. G., Frommer J., Kraemer S. M., Bourdon B. and Kretzschmar R. (2010) Iron isotope fractionation during proton- and ligand-promoted dissolution of primary phyllosilicates. Geochim. Cosmochim. Acta 74, 3112–3128.

Kieber R. J., Hardison D. R., Whitehead R. F. and Willey J. D. (2003) Photochemical production of Fe(II) in rainwater. Environ. Sci. Technol. 37, 4610–4616.

Kim K. H., Kabir E. and Kabir S. (2015) A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143.

Kim T., Obata H., Nishioka J. and Gamo T. (2017) Distribution of dissolved zinc in the western and central subarctic North Pacific. Global Biogeochem. Cycles 31, 1454–1468.

Kopcewicz B., Kopcewicz M. and Pietruczuk A. (2015) The Mössbauer study of atmospheric ironcontaining aerosol in the coarse and PM2.5 fractions measured in rural site. Chemosphere 131, 9–16.

Koponen M., Gustafsson T., Kalliomäki K., Kalliomäki P. L., Moilanen M. and Pyy L. (1980) Dusts in a steel-making plant - Lung contamination among iron workers. Int. Arch. Occup. Environ. Health 47, 35–45.

Kraemer S. M. (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66, 3–18.

Kubaschewski O. and Alcock C. B. (1979) Metallurgical Thermochemistry. 3rd ed., Pergamon, Oxford.

Kuma K. and Matsunaga K. (1995) Availability of colloidal ferric oxides to coastal marine phytoplankton. Mar. Biol. 122, 1–11.

Kuma K., Tanaka J., Matsunaga Kensuke and Matsunaga Katsuhiko (2000) Effect of hydroxamate ferrisiderophore complex (ferrichrome) on iron uptake and growth of a coastal marine diatom, Chaetoceros sociale. Limnol. Oceanogr. 45, 1235–1244.

Labatut M., Lacan F., Pradoux C., Chemeleff J., Radic A., Murray J. W., Poitrasson F., Johansen A. M. and Thil F. (2014) Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Global Biogeochem. Cycles 28, 1044–1065.

Ladeira L., Fernando L., Castro A. De, Castro F. De and Vinícius M. (2015) Characterization and mass balance of trace elements in an iron ore sinter plant. Integr. Med. Res. 5, 144–151.

Lam P. J. and Bishop J. K. B. (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys. Res. Lett. 35, 1–5.

Lamarque J. F., Bond T. C., Eyring V., Granier C., Heil A., Klimont Z., Lee D., Liousse C., Mieville A., Owen B., Schultz M. G., Shindell D., Smith S. J., Stehfest E., Van Aardenne J., Cooper O. R., Kainuma M., Mahowald N., McConnell J. R., Naik V., Riahi K. and Van Vuuren D. P. (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 10, 7017–7039.

Lelieveld J., Evans J. S., Fnais M., Giannadaki D. and Pozzer A. (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371.

Levasseur S., Frank M., Hein J. R. and Halliday A. N. (2004) The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry? Earth Planet. Sci. Lett. 224, 91–105.

Li M., Xiang J., Hu S., Sun L.-S., Su S., Li P.-S. and Sun X.-X. (2004) Characterization of solid residues from municipal solid waste incinerator. Fuel 83, 1397–1405.

Li W., Xu L., Liu X., Zhang J., Lin Y., Yao X., Gao H., Zhang D., Chen J., Wang W. and Harrison R. M. (2017) Air pollution – aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances 3, 1–7.

Liao W. H., Takano S., Yang S. C., Huang K. F. and Sohrin Y. (2020) Zn isotope composition in the water column of the northwestern Pacific Ocean : The importance of external sources. Global Biogeochem. Cycles 1, 1–18.

Liati A., Pandurangi S. S., Boulouchos K., Schreiber D. and Arroyo Rojas Dasilva Y. (2015) Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmos. Environ. 101, 34–40.

Lighty J. S. A. S., Veranth J. M. and Sarofim A. F. (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 50, 1565–1618; discussion 1619-1622.

Linak W. P., Yoo J. I., Wasson S. J., Zhu W., Wendt J. O. L., Huggins F. E., Chen Y., Shah N., Huffman G. P. and Ian Gilmour M. (2007) Ultrafine ash aerosols from coal combustion: Characterization and health effects. Proc. Combust. Inst. 31 II, 1929–1937.

Liu X. H., Wai K. M., Wang Y., Zhou J., Li P. H., Guo J., Xu P. J. and Wang W. X. (2012) Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China. Chemosphere 88, 531–541.

Liu X. and Millero F. J. (1999) The solubility of iron hydroxide in sodium chloride solutions. Geochim. Cosmochim. Acta 63, 3487–3497.

Liu X., Penner J. E. and Herzog M. (2005) Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. D Atmos.110, 1–37.

Longo A. F., Feng Y., Lai B., Landing W. M., Shelley R. U., Nenes A., Mihalopoulos N., Violaki K. and Ingall E. D. (2016) Influence of atmospheric processes on the solubility and composition of iron in Saharan Dust. Environ. Sci. Technol. 50, 6912–6920.

Luo C., Mahowald N., Bond T., Chuang P. Y., Artaxo P., Siefert R., Chen Y. and Schauer J. (2008) Combustion iron distribution and deposition. Global Biogeochem. Cycles 22, 1–17.

Luo C., Mahowald N. M., Meskhidze N., Chen Y., Siefert R. L., Baker A. R. and Johansen A. M. (2005) Estimation of iron solubility from observations and a global aerosol model. J. Geophys. Res. Atmos. 110, 1–23.

Maher B. A., Ahmed I. A. M., Karloukovski V., MacLaren D. A., Foulds P. G., Allsop D., Mann D. M. A., Torres-Jardón R. and Calderon-Garciduenas L. (2016) Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. 113, 10797–10801.

Mahowald N. M., Hamilton D. S., Mackey K. R. M., Moore J. K., Baker A. R., Scanza R. A. and Zhang Y. (2018) Aerosol trace metal leaching and impacts on marine microorganisms. Nat. Commun. 9,1–15.

Majestic B. J., Anbar A. D. and Herckes P. (2009a) Elemental and iron isotopic composition of aerosols collected in a parking structure. Sci. Total Environ. 407, 5104–5109.

Majestic B. J., Anbar A. D. and Herckes P. (2009b) Stable isotopes as a tool to apportion atmospheric iron. Environ. Sci. Technol. 43, 4327–4333.

Marchetti A., Maldonado M. T., Lane E. S. and Harrison P. J. (2006) Iron requirements of the pennate diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51, 2092–2101.

Marris H., Deboudt K., Flament P., Grobéty B. and Gieré R. (2013) Fe and Mn oxidation states by TEM-EELS in fine-particle emissions from a Fe-Mn alloy making plant. Environ. Sci. Technol. 47,10832–10840.

Martin J. H., Coale K. H., Johnson K. S., Fitzwater S. E., Gordon R. M., Tanner S. J., Hunter C. N., Elrod V. A., Nowicki J. L., Coley T. L., Barber R. T., Lindley S., Watson A. J., Van Scoy K., Law C. S.,Liddicoat M. I., Ling R., Stanton T., Stockel J., Collins C., Anderson A., Bidigare R., Ondrusek M., Latasa M., Millero F. J., Lee K., Yao W., Zhang J. Z., Friederich G., Sakamoto C., Chavez F., Buck K., Kolber Z., Greene R., Falkowski P., Chisholm S. W., Hoge F., Swift R., Yungel J., Turner S., Nightingale P., Hatton A., Liss P. and Tindale N. W. (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129.

Martin J. H. and Fitzwater S. E. (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341–343.

Martin J. H., Gordon R. M., Fitzwater S. and William W. (1989) VERTEX : phytoplankton / iron studies in the Gulf of Alaska. Deep. Res. Part I Oceanogr. Res. Pap. 36, 649-680.

Martínez-Garcia A., Rosell-Melé A., Geibert W., Gersonde R., Masqué P., Gaspari V. and Barbante C. (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, 1–14.

Martínez-Garcia A., Rosell-Melé A., Jaccard S. L., Geibert W., Sigman D. M. and Haug G. H. (2011) Southern Ocean dust-climate coupling over the past four million years. Nature 476, 312–315.

Martínez-García A., Sigman D. M., Ren H., Anderson R. F., Straub M., Hodell D. A., Jaccard S. L., Eglinton T. I. and Haug G. H. (2014) Iron fertilization of the subantarctic ocean during the last ice age. Science (80-. ). 343, 1347–1350.

Matsui H., Mahowald N. M., Moteki N., Hamilton D. S., Ohata S., Yoshida A., Koike M., Scanza R. A. and Flanner M. G. (2018) Anthropogenic combustion iron as a complex climate forcer. Nat. Commun. 9.

Mattielli N., Petit J. C. J., Deboudt K., Flament P., Perdrix E., Taillez A., Rimetz-Planchon J. and Weis D. (2009) Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery. Atmos. Environ. 43, 1265–1272.

Mead C., Herckes P., Majestic B. J. and Anbar A. D. (2013) Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophys. Res. Lett. 40, 5722–5727.

Measures C. I., Brown M. T. and Vink S. (2005) Dust deposition to the surface waters of the western and central North Pacific inferred from surface water dissolved aluminum concentrations. Geochemistry, Geophys. Geosystems 6, 1-16.

Miller A., Ahlstrand G., Kittelson D. and Zachariah M. (2007) The fate of metal (Fe) during diesel combustion: Morphology, chemistry, and formation pathways of nanoparticles. Combust. Flame 149, 129–143.

Milot J., Poitrasson F., Baron S. and Coustures M. P. (2016) Iron isotopes as a potential tool for ancient iron metals tracing. J. Archaeol. Sci. 76, 9–20.

Ministry of Environment (http://www.env.go.jp/)

Moore C. M., Mills M. M., Arrigo K. R., Berman-Frank I., Bopp L., Boyd P. W., Galbraith E. D., Geider R. J., Guieu C., Jaccard S. L., Jickells T. D., La Roche J., Lenton T. M., Mahowald N. M., Marañón E., Marinov I., Moore J. K., Nakatsuka T., Oschlies A., Saito M. A., Thingstad T. F., Tsuda A. and Ulloa O. (2013) Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710.

Morel F. M. M. and Price N. M. (2003) The biogeochemical cycles of trace metals in the oceans. Science (80-. ). 300, 944–947.

Morton P. L., Landing W. M., Hsu S. C., Milne A., Aguilar-Islas A. M., Baker A. R., Bowie A. R., Buck C. S., Gao Y., Gichuki S., Hastings M. G., Hatta M., Johansen A. M., Losno R., Mead C., Patey M. D., Swarr G., Vandermark A. and Zamora L. M. (2013) Methods for the sampling and analysis of marine aerosols: Results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnol. Oceanogr. Methods 11, 62–78.

Moteki N., Adachi K., Ohata S., Yoshida A., Harigaya T., Koike M. and Kondo Y. (2017) Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat. Commun. 8, 1–11.

Myhre G., Highwood E. J. and Shine K. P. (1998) New estimates of radiative forcing due to well mixed greenhouse gas. 25, 2715–2718.

Myriokefalitakis S., Ito A., Kanakidou M., Nenes A., Krol M. C., Mahowald N. M., Scanza R. A., Hamilton D. S., Johnson M. S., Meskhidze N., Kok J. F., Guieu C., Baker A. R., Jickells T. D., Sarin M. M., Bikkina S., Shelley R., Bowie A., Perron M. M. G. and Duce R. A. (2018) Reviews

and syntheses: The GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences 15, 6659–6684.

Nishikawa M., Batdorj D., Ukachi M., Onishi K., Nagano K., Mori I., Matsui I. and Sano T. (2013) Preparation and chemical characterisation of an Asian mineral dust certified reference material. Anal. Methods 5, 4088.

Nishioka J., Nakatsuka T., Ono K., Volkov Y. N., Scherbinin A. and Shiraiwa T. (2014) Quantitative evaluation of iron transport processes in the Sea of Okhotsk. Prog. Oceanogr. 126, 180–193.

Nishioka J. and Obata H. (2017) Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnol. Oceanogr. 62, 2004–2022.

Nishioka J., Obata H. and Tsumune D. (2013) Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean. Earth Planet. Sci. Lett. 361, 26–33.

Nishioka J., Ono T., Saito H., Nakatsuka T., Takeda S., Yoshimura T., Suzuki K., Kuma K., Nakabayashi S., Tsumune D., Mitsudera H., Johnson W. K. and Tsuda A. (2007) Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk. J. Geophys. Res. Ocean. 112,1-15.

Nishioka J., Ono T., Saito H., Sakaoka K. and Yoshimura T. (2011) Oceanic iron supply mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic Pacific. J.Geophys. Res. Ocean. 116, 1-17.

Nriagu J. O. and Pacnya J. M. (1988) Quantative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134–139.

Oakes M., Weber R. J., Lai B., Russell A. and Ingall E. D. (2012) Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: Investigating the relationship between speciation and fractional iron solubility. Atmos. Chem. Phys. 12, 745–756.

Ochoa Gonzalez R. and Weiss D. (2015) Zinc isotope variability in three coal-fired power plants: A predictive model for determining isotopic fractionation during combustion. Environ. Sci. Technol. 49, 12560-12567.

Ohara T. and Kurokawa J. (2018) Long-term variation of emissions of air pollutants related to atmospheric aerosol in Asia, China and Japan. Earozoru Kenkyu 33, 95–101.

Ohata S., Yoshida A., Moteki N., Adachi K., Takahashi Y., Kurisu M. and Koike M. (2018) Abundance of light‐absorbing anthropogenic iron oxide aerosols in the urban atmosphere and their emission sources. J. Geophys. Res. Atmos. 123, 1–20.

Ooki A., Nishioka J., Ono T. and Noriki S. (2009) Size dependence of iron solubility of Asian mineral dust particles. J. Geophys. Res. Atmos. 114, 1–8.

Paris R., Desboeufs K. V., Formenti P., Nava S. and Chou C. (2010) Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: Implication for iron solubility. Atmos. Chem. Phys. 10, 4273–4282.

Petit J. R., Jouzel J., Raynaud D., Barnola J. M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Loriu C., Pepin L., Ritz C.,Saltzman E. and Stievenard M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436.

Proctor D. M., Fehling K. A., Shay E. C., Wittenborn J. L., Green J. J., Avent C., Bigham R. D., Connolly M., Lee B., Shepker T. O. and Zak M. A. (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 34, 1576–1582.

Radic A., Lacan F. and Murray J. W. (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 306, 1–10.

Rayleigh, Lord (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos. Mag. Ser. 5 42, 493–498.

Revels B. N., Zhang R., Adkins J. F. and John S. G. (2015) Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochim. Cosmochim. Acta 166, 92–104.

Richter F., Dauphas N. and Teng F. (2009) Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem. Geol. 258, 92–103.

Rotman D. A., Atherton C. S., Bergmann D. J., Cameron-Smith P. J., Chuang C. C., Connell P. S.,Dignon J. E., Franz A., Grant K. E., Kinnison D. E., Molenkamp C. R., Proctor D. D. and Tannahill J. R. (2004) IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases. J. Geophys. Res. D Atmos. 109.

Rouxel O. J., Bekker A. and Edwards K. J. (2005) Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science (80-. ). 307, 1088–1091.

Rudge J. F., Reynolds B. C. and Bourdon B. (2009) The double spike toolbox. Chem. Geol. 265, 420–431.

Rue E. E. L. and Bruland K. K. W. (1995) Complexation of iron (III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping. Mar. Chem. 50, 117–138.

Sakata K., Kurisu M., Tanimoto H., Sakaguchi A., Uematsu M., Miyamoto C. and Takahashi Y. (2018) Custom-made PTFE filters for ultra-clean size-fractionated aerosol sampling for trace metals. Mar. Chem. 206, 100–108.

Sanderson P., Delgado-Saborit J. M. and Harrison R. M. (2014) A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365.

Sanderson P., Su S. S., Chang I. T. H., Delgado Saborit J. M., Kepaptsoglou D. M., Weber R. J. M. and Harrison R. M. (2016) Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmos. Environ. 140, 167–175.

Sanibondi P. (2015) Numerical investigation of the effects of iron oxidation reactions on the fume formation mechanism in arc welding. J. Phys. D. Appl. Phys. 48, 1–13.

Sarthou G., Baker A. R., Blain S., Achterberg E. P., Boye M., Bowie A. R., Croot P., Laan P., De Baar H. J. W., Jickells T. D. and Worsfold P. J. (2003) Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep. Res. Part I Oceanogr. Res. Pap. 50, 1339–1352.

Sarthou G., Baker A. R., Kramer J., Laan P., Laës A., Ussher S., Achterberg E. P., de Baar H. J. W., Timmermans K. R. and Blain S. (2007) Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean. Mar. Chem. 104, 186–202.

Schoenberg R. and Von Blanckenburg F. (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int. J. Mass Spectrom. 242, 257–272.

Schroth A. W., Crusius J., Sholkovitz E. R. and Bostick B. C. (2009) Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. 2, 337–340.

Schwertmann U. (1991) Solubility and dissolution of iron oxides. Plant Soil 130, 1–25.

Sedwick P. N., Sholkovitz E. R. and Church T. M. (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea. Geochemistry, Geophys. Geosystems 8, 1–41.

Seinfeld J. H. and Pandis S. N. (2006) Atmospheric chemistry and physics. Hoboken.

Shelley R. U., Landing W. M., Ussher S. J., Planquette H. and Sarthou G. (2018) Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences 15, 2271–2288.

Shi Z. B., Woodhouse M. T., Carslaw K. S., Krom M. D., Mann G. W., Baker A. R., Savov I., Fones G. R., Brooks B., Drake N., Jickells T. D. and Benning L. G. (2011) Minor effect of physical size sorting on iron solubility of transported mineral dust. Atmos. Chem. Phys. 11, 8459–8469.

Shi Z., Krom M. D., Bonneville S., Baker A. R., Jickells T. D. and Benning L. G. (2009) Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environ. Sci. Technol. 43, 6592–6596.

Sholkovitz E. R., Sedwick P. N. and Church T. M. (2009) Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic. Geochim. Cosmochim. Acta 73, 3981–4003.

Sholkovitz E. R., Sedwick P. N., Church T. M., Baker A. R. and Powell C. F. (2012) Fractional solubility of aerosol iron: Synthesis of a global-scale data set. Geochim. Cosmochim. Acta 89, 173–189.

Sidhu P. S., Gilkes R. J., Cornell R. M., Posner A. M. and Quirk J. P. (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29, 269–276.

Siebert C., Nägler T. F. and Kramers J. D. (2001) Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry, Geophys. Geosystems 2.

Siefert R. L., Webb S. M. and Hoffmann M. R. (1996) Determination of photochemically available iron in ambient aerosols. J. Geophys. Res. 101, 14441–14449.

Sigman D. M. and Hain M. P. (2012) The Biological Productivity of the Ocean What is Ocean Productivity ? Nat. Educ. 3, 1–8.

Sohrin Y., Urushihara S., Nakatsuka S., Kono T., Higo E., Minami T., Norisuye K. and Umetani S. (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Anal. Chem. 80, 6267–6273. SPECIATE database (https://cfpub.epa.gov/speciate/)

Srivstava U. C. and Nigam H. L. (1973) X-Ray Absorption Edge Spectrometry (XAES) as applied to Coordination Chemistry. Coord. Chem. Rev. 9, 275–310.

Stein A. F., Draxler R. R., Rolph G. D., Stunder B. J. B., Cohen M. D. and Ngan F. (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077.

Streets D. G., Yarber K. F., Woo J.-H. and Carmichael G. R. (2003) Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochem. Cycles 17, 1–20.

Sweeton F. H. and Baes C. F. (1970) The solubility of magnetite and hydrolysis of ferrous ion in aqueous solutions at elevated temperatures. J. Chem. Thermodyn. 2, 479–500.

Sylvestre A., Mizzi A., Mathiot S., Masson F., Jaffrezo J. L., Dron J., Mesbah B., Wortham H. and Marchand N. (2017) Comprehensive chemical characterization of industrial PM2.5 from steel industry activities. Atmos. Environ. 152, 180–190.

Symonds R. B., Reed M. H. and Rose W. I. (1992) Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes. Geochim. Cosmochim. Acta 56, 633–657.

Tagliabue A., Bopp L., Dutay J.-C., Bowie A. R., Chever F., Jean-Baptiste P., Bucciarelli E., Lannuzel D., Remenyi T., Sarthou G., Aumont O., Gehlen M. and Jeandel C. (2010) Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3, 252–256.

Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N., Wanninkhof R., Feely R. A., Sabine C., Olafsson J. and Nojiri Y. (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep. Res. Part II Top. Stud. Oceanogr. 49, 1601–1622.

Takahashi Y., Furukawa T., Kanai Y., Uematsu M., Zheng G. and Marcus M. A. (2013) Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan. Atmos. Chem. Phys. 13, 7695–7710.

Takahashi Y., Higashi M., Furukawa T. and Mitsunobu S. (2011) Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmos. Chem. Phys. 11, 11237–11252.

Takeda S. (2011) Iron and Phytoplankton Growth in the Subarctic North Pacific. Aqua-BioScience Monogr. 4, 41–93.

Takeichi Y., Inami N., Suga H., Takahashi Y. and Ono K. (2016) Compact scanning transmission X-ray microscope at the photon factory. AIP Conf. Proc. 1696.

Taylor S. R. (1964) Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28, 1273–1285.

Textor C., Schulz M., Guibert S., Kinne S., Balkanski Y., Bauer S., Berntsen T., Berglen T., Boucher O., Chin M., Dentener F., Diehl T., Easter R., Feichter H., Fillmore D., Ghan S., Ginoux P., Gong S., Grini A., Hendricks J., Horowitz L., Huang P., Isaksen I., Iversen T., Kloster S., Koch D., Kirkevåg A., Kristjansson J. E., Krol M., Lauer A., Lamarque J. F., Liu X., Montanaro V., Myhre G., Penner J., Pitari G., Reddy S., Seland, Stier P., Takemura T. and Tie X. (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777–1813.

Tsuda A., Takeda S., Saito H., Nishioka J., Kudo I., Nojiri Y., Suzuki K., Uematsu M., Wells M. L.,Tsumune D., Yoshimura T., Aono T., Aramaki T., Cochlan W. P., Hayakawa M., Imai K., Isada T., Iwamoto Y., Johnson W. K., Kameyama S., Kato S., Kiyosawa H., Kondo Y., Levasseur M., Machida R. J., Nagao I., Nakagawa F., Nakanishi T., Nakatsuka S., Narita A., Noiri Y., Obata H., Ogawa H., Oguma K., Ono T., Sakuragi T., Sasakawa M., Sato M., Shimamoto A., Takata H.,

Trick C. G., Watanabe Y. W., Wong C. S. and Yoshie N. (2007) Evidence for the grazing hypothesis: Grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). J. Oceanogr. 63, 983–994.

Tsuda A., Takeda S., Saito H., Nishioka J., Nojiri Y., Kudo I., Kiyosawa H., Shiomoto A., Imai K., Ono

T., Shimamoto A., Tsumune D., Yoshimura T., Aono T., Hinuma A., Kinugasa M., Suzuki K., Sohrin Y., Noiri Y., Tani H., Deguchi Y., Tsurushima N., Ogawa H., Fukami K., Kuma K. and Saino T. (2003) A mesoscale iron enrichment in the Western subarctic Pacific induces a large centric diatom bloom. Science (80-. ). 300, 958–961.

Turkdogan E. T., Grieveson P. and Darken L. S. (1962) The formation of iron oxide fume. J. Met., 521–526.

Uchimoto K., Nakamura T., Nishioka J., Mitsudera H., Misumi K., Tsumune D. and Wakatsuchi M. (2014) Simulation of high concentration of iron in dense shelf water in the Okhotsk Sea. Prog. Oceanogr. 126, 194–210.

Uematsu M., Duce R. A. and Prospero J. M. (1985) Deposition of atmospheric mineral particles in the North Pacific Ocean. J. Atmos. Chem. 3, 123–138.

Uematsu M., Duce R. A., Prospero J. M., Chen L., Merrill J. T. and McDonald R. L. (1983) Transport of mineral aerosol from Asia over the North Pacific ocean. J. Geophys. Res. 88, 5342–5352.

Uematsu M., Hattori H., Nakamura T., Narita Y., Jung J., Matsumoto K., Nakaguchi Y. and Kumar M. D. (2010) Atmospheric transport and deposition of anthropogenic substances from the Asia to the East China Sea. Mar. Chem. 120, 108–115.

Uematsu M., Wang Z. and Uno I. (2003) Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model. Geophys. Res. Lett. 30, 10–13.

Var F., Narita Y. and Tanaka S. (2000) The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmos. Environ. 34, 2755–2770.

Wang J., Davis A. M., Clayton R. N. and Mayeda T. K. (1994) Kinetic isotopic fractionation during the evaporation of the iron oxide from liquid state. Abstr. 25th Lunar Planet. Sci. Conf., 1459–1460.

Wang J., Wang Y., Liu H., Yang Y., Zhang X., Li Y., Zhang Y. and Deng G. (2013) Diagnostic identification of the impact of meteorological conditions on PM2.5 concentrations in Beijing. Atmos. Environ. 81, 158–165.

Wang X., Sato T. and Xing B. (2006) Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan. Chemosphere 65, 2434–2439.

Wang Y., Zhuang G., Sun Y. and An Z. (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 40, 6579–6591.

Watson A. J., Bakker D. C., Ridgwell A. J., Boyd P. W. and Law C. S. (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–733.

Weyer S., Anbar A. D., Brey G. P., Münker C., Mezger K. and Woodland A. B. (2005) Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264.

White A. F. and Brantley S. L. (1995) Chemical Weathering Rates of Silicate Minerals. ed. H. R. Paul, Mineralogical Society of America, Washington, D.C.

Willeke K. and Whitby K. T. (1975) Atmospheric aerosols: size distribution interpretation. J. Air Pollut. Control Assoc. 25, 529–534.

Winton V. H. L., Edwards R., Bowie A. R., Keywood M., Williams A. G., Chambers S. D., Selleck P. W., Desservettaz M., Mallet M. D. and Paton-Walsh C. (2016) Dry season aerosol iron solubility in tropical northern Australia. Atmos. Chem. Phys. 16, 12829–12848.

Wogelius R. A. and Walther J. V. (1992) Olivine dissolution kinetics at near-surface conditions. Chem. Geol. 97, 101–112.

Yamada E., Funoki S., Abe Y., Umemura S., Yamaguchi D. and Fuse Y. (2005) Size distribution and characteristics of chemical components in ambient particulate matter. Anal. Sci. 21, 89–94.

Yamaguchi K. E., Johnson C. M., Beard B. L. and Ohmoto H. (2005) Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chem. Geol. 218, 135–169.

Yamamoto A., Abe-Ouchi A., Ohgaito R., Ito A. and Oka A. (2019) Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust. Clim. Past 15, 981–996.

Yasuda I., Hiroe Y., Komatsu K., Kawasaki K., Joyce T. M., Bahr F. and Kawasaki Y. (2001) Hydrographic structure and transport of the Oyashio south of Hokkaido and the formation of North Pacific Intermediate Water. J. Geophys. Res. Ocean. 106, 6931–6942.

Yildirim I. Z. and Prezzi M. (2011) Chemical, mineralogical, and morphological properties of steel slag. 2011, 1–13.

Yoshida M., Kuma K., Iwade S., Isoda Y., Takata H. and Yamada M. (2006) Effect of aging time on the availability of freshly precipitated ferric hydroxide to coastal marine diatoms. Mar. Biol. 149, 379–392.

Young E. D., Galy A. and Nagahara H. (2002) Kinetic and equilibrium mass-dependant isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104.

Zhang Y., Kasai E. and Nakamura T. (2005) Vaporization behavior of zinc from the FeO-CaO-SiO2-Al2O3 slag system. ISIJ Int. 45, 1813–1819.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る