リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「炭酸カルシウムおよび炭酸アパタイトコーティングチタンインプラントの作製と組織学的評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

炭酸カルシウムおよび炭酸アパタイトコーティングチタンインプラントの作製と組織学的評価

石, 瑞 SHI, RUI シー, ルイ 九州大学

2020.09.25

概要

Titanium (Ti) implants that realize rapid osseointegration are required for favorable outcome. Rough implant surfaces favor osseointegration, and the coating of implants with natural bone mineral, i.e., carbonate apatite (CO3Ap), may be effective for osseointegration. To achieve rapid osseointegration, rough Ti substrates were coated with CO3Ap (CO3Ap-Ti), and the effects were evaluated in vitro and in vivo. For comparison, rough Ti without coating (rough-Ti) and calcium carbonate-coated rough Ti (CaCO3-Ti) substrates were fabricated. The adhesive strengths of CaCO3 and CO3Ap to the substrates were ~56.6 and ~76.8 MPa, respectively, being significantly higher than the strength defined in ISO13779-2 (15 MPa). CaCO3 and CO3Ap coatings significantly promoted pre-osteoblastic MC3T3-E1 cell proliferation. Additionally, the CO3Ap coating promoted higher osteogenic differentiation activity than CaCO3 coating. CO3Ap-Ti implantation into rabbit tibia defects prompted bone maturation, compared to CaCO3-Ti or rough-Ti implantation. The bone-implant contact percentage with CO3Ap-Ti and CaCO3-Ti was higher than that with rough-Ti. Consequently, CO3Ap -Ti acquired robust bond with the host bone at early stage (four weeks post-implantation), compared to CaCO3-Ti and rough-Ti: the CO3Ap-Ti–bone bonding strength was ~1.9- and ~5.5-fold higher than that of CaCO3-Ti and rough-Ti, respectively. Thus, CO3Ap coating of Ti implants was effective for achieving rapid osseointegration.

参考文献

[1] X. Y. Liu, P. K. Chu, C. X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R 47, 49-121 (2004).

[2] C. Oldani, A. Dominguez. Titanium as a Biomaterial for Implants. Recent Advances in Arthroplasty. InTech; (2012).

[3] A. F. Mavrogenis, R. Dimitriou, J. Parvizi, G. C. Babis, Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9, 61-71 (2009).

[4] P. I. Branemark, Osseointegration and its experimental background. J Prosthet Dent 50, 399-410 (1983).

[5] H. Hirai, A. Okumura, M. Goto, T. Katsuki, Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J Oral Maxillofac Surg 59, 531-537 (2001).

[6] T. Albrektsson, P. I. Branemark, H. A. Hansson, J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52, 155-170 (1981).

[7] Y. T. Sul, C. B. Johansson, Y. Jeong, K. Roser, A. Wennerberg, T. Albrektsson, Oxidized implants and their influence on the bone response. J Mater Sci Mater Med 12, 1025-1031 (2001).

[8] S. Prasad, M. Ehrensberger, M. P. Gibson, H. Kim, E. A. Monaco, Biomaterial properties of titanium in dentistry. J Oral Biosci 57, 192-199 (2015).

[9] L. Zhang, Y. Ayukawa, R. Z. Legeros, S. Matsuya, K. Koyano, K. Ishikawa, Tissue- response to calcium-bonded titanium surface. J Biomed Mater Res A 95, 33-39 (2010).

[10] L. Jonasova, F. A. Muller, A. Helebrant, J. Strnad, P. Greil, Biomimetic apatite formation on chemically treated titanium. Biomaterials 25, 1187-1194 (2004).

[11]L. Le Guehennec, M. A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 4, 535-543 (2008).

[12] Y. Tian, S. Y. Ding, H. Peng, et al, Osteoblast growth behavior on porous-structure titanium surface. Appl Surf Sci 261, 25-30 (2012).

[13] J. B. Nebe, L. Muller, F. Luthen, et al, Osteoblast response to biomimetically altered titanium surfaces. Acta Biomater 4, 1985-1995 (2008).

[14] J. M. Lee, J. I. Lee, Y. J. Lim, In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells. Appl Surf Sci 256, 3086-3092 (2010).

[15] R. Castellani, A. De Ruijter, H. Renggli, J. Jansen, Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implants Res 10, 369-378 (1999).

[16] R. A. Gittens, T. Mclachlan, R. Olivares-Navarrete, et al, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395-3403 (2011).

[17] X. Wen, X. Wang, N. Zhang, Microrough surface of metallic biomaterials: a literature review. Biomed Mater Eng 6, 173-189 (1996).

[18] J. Y. Park, C. H. Gemmell, J. E. Davies, Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22, 2671-2682 (2001).

[19] J. E. Davies, Mechanisms of endosseous integration. Int J Prosthodont 11, 391-401 (1998).

[20] R. Kriparamanan, P. Aswath, A. Zhou, L. Tang, K. T. Nguyen, Nanotopography: cellular responses to nanostructured materials. J Nanosci Nanotechnol 6, 1905-1919 (2006).

[21] G. L. Yang, F. M. He, X. F. Yang, X. X. Wang, S. F. Zhao, Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol 106, 516-524 (2008).

[22] S. A. Cho, K. T. Park, The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials 24, 3611-3617 (2003).

[23] Y. Liu, Y. Zhou, T. Jiang, Y. D. Liang, Z. Zhang, Y. N. Wang, Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. Int J Oral Sci 9, 133-138 (2017).

[24] A. Kulkarni Aranya, S. Pushalkar, M. Zhao, R. Z. Legeros, Y. Zhang, D. Saxena, Antibacterial and bioactive coatings on titanium implant surfaces. J Biomed Mater Res A 105, 2218-2227 (2017).

[25] H. Takadama, T. Kokubo. In vitro evaluation of bone bioactivity. Bioceramics and their clinical applications. Elsevier; 2008:165-182.

[26] D. P. Rivero, J. Fox, A. K. Skipor, R. M. Urban, J. O. Galante, Calcium phosphate- coated porous titanium implants for enhanced skeletal fixation. J Biomed Mater Res 22, 191-201 (1988).

[27] H. Q. Nguyen, D. A. Deporter, R. M. Pilliar, N. Valiquette, R. Yakubovich, The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25, 865-876 (2004).

[28] J. Suwanprateeb, W. Suvannapruk, W. Chokevivat, S. Kiertkrittikhoon, N. Jaruwangsanti, P. Tienboon, Bioactivity of a sol-gel-derived hydroxyapatite coating on titanium implants in vitro and in vivo. Asian Biomed (Res Rev News) 12, 35-44 (2018).

[29] C. Liang, H. Wang, J. Yang, et al, Femtosecond laser-induced micropattern and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration. ACS Appl Mater Interfaces 5, 8179-8186 (2013).

[30] J. H. Sörensen, L. Dürselen, K. Welch, et al, Biomimetic Hydroxyapatite Coated Titanium Screws Demonstrate Rapid Implant Stabilization and Safe Removal. J Nanobiotechnology 06, 20-35 (2015).

[31] V. S. Kattimani, S. Kondaka, K. P. Lingamaneni, Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone and Tissue Regeneration Insights 7, BTRI.S36138 (2016).

[32] J. O. Hollinger, J. Brekke, E. Gruskin, D. Lee, Role of bone substitutes. Clin Orthop Relat Res 324, 55-65 (1996).

[33] H. W. Yang, M. H. Lin, Y. Z. Xu, G. W. Shang, R. R. Wang, K. Chen, Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano- hydroxyapatite coated roughened titanium surfaces. Int J Clin Exp Med 8, 257-264 (2015).

[34] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials 17, 1771- 1777 (1996).

[35] K. Soballe, Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 255, 1-58 (1993).

[36] G. M. Vidigal, Jr., L. C. Aragones, A. Campos, Jr., M. Groisman, Histomorphometric analyses of hydroxyapatite-coated and uncoated titanium dental implants in rabbit cortical bone. Implant Dent 8, 295-302 (1999).

[37] M. Weinlaender, E. B. Kenney, V. Lekovic, J. Beumer, 3rd, P. K. Moy, S. Lewis, Histomorphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants 7, 491-496 (1992).

[38] S. D. Cook, K. A. Thomas, J. F. Kay, M. Jarcho, Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res 232, 225-243 (1988).

[39] F. Iamoni, G. Rasperini, P. Trisi, M. Simion, Histomorphometric analysis of a half hydroxyapatite-coated implant in humans: a pilot study. Int J Oral Maxillofac Implants 14, 729-735 (1999).

[40] Y. Y. Chung, S. C. Ki, K. Y. So, D. H. Kim, K. H. Park, Y. S. Lee, High revision rate of hydroxyapatite-coated ABG-I prosthesis. J Orthop Sci 14, 543-547 (2009).

[41] R. D. Bloebaum, J. A. Dupont, Osteolysis from a press-fit hydroxyapatite-coated implant. A case study. J Arthroplasty 8, 195-202 (1993).

[42] C. J. Oosterbos, H. Vogely, M. W. Nijhof, et al, Osseointegration of hydroxyapatite- coated and noncoated Ti6Al4V implants in the presence of local infection: a comparative histomorphometrical study in rabbits. J Biomed Mater Res 60, 339-347 (2002).

[43] S. L. Wheeler, Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 11, 340-350 (1996).

[44] Z. Artzi, G. Carmeli, A. Kozlovsky, A distinguishable observation between survival and success rate outcome of hydroxyapatite-coated implants in 5-10 years in function. Clin Oral Implants Res 17, 85-93 (2006).

[45] R. Z. Legeros, Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15, 1-201 (1991).

[46] K. Ishikawa, Carbonate apatite bone replacement: learn from the bone. J Ceram Soc Jpn 127, 595-601 (2019).

[47] K. Hayashi, R. Kishida, A. Tsuchiya, K. Ishikawa, Honeycomb blocks composed of carbonate apatite, beta-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses. Mater Today Bio 4, 100031 (2019).

[48] K. Ishikawa, Y. Miyamoto, A. Tsuchiya, K. Hayashi, K. Tsuru, G. Ohe, Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and beta-Tricalcium Phosphate Bone Substitutes. Materials (Basel) 11, 1993 (2018).

[49] A. Ogose, T. Hotta, H. Kawashima, et al, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater 72, 94-101 (2005).

[50] S. Weiner, H. D. Wagner, THE MATERIAL BONE: Structure-Mechanical Function Relations. Annual Review of Materials Science 28, 271-298 (1998).

[51] Y. Doi, T. Koda, N. Wakamatsu, et al, Influence of carbonate on sintering of apatites. J Dent Res 72, 1279-1284 (1993).

[52] M. Maruta, S. Matsuya, S. Nakamura, K. Ishikawa, Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam. Dent Mater J 30, 14-20 (2011).

[53] K. Ishikawa, Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Materials 3, 1138-1155 (2010).

[54] B. Xu, K. M. Poduska, Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys Chem Chem Phys 16, 17634- 17639 (2014).

[55] H. Madupalli, B. Pavan, M. M. J. Tecklenburg, Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255, 27-35 (2017).

[56] K. H. Stern, High Temperature Properties and Decomposition of Inorganic Salts Part 3, Nitrates and Nitrites. J Phys Chem Ref Data 1, 747-772 (1972).

[57] A. Prince. Phase diagrams of ternary gold alloys. APDIC; (1990).

[58] A. K. Kurella, M. Z. Hu, N. B. Dahotre, Effect of microstructural evolution on wettability of laser coated calcium phosphate on titanium alloy. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 28, 1560-1564 (2008).

[59] K. Liu, L. Jiang, Metallic surfaces with special wettability. Nanoscale 3, 825-838 (2011).

[60] O. Albayrak, O. El-Atwani, S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf Coat Technol 202, 2482- 2487 (2008).

[61] B. Mavis, A. C. Taş, Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates. J Am Ceram Soc 83, 989-991 (2004).

[62] M. Wei, A. J. Ruys, M. V. Swain, S. H. Kim, B. K. Milthorpe, C. C. Sorrell, Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci Mater Med 10, 401-409 (1999).

[63] I. G. Beşkardeş, M. Gümüşderelioğlu, Biomimetic Apatite-coated PCL Scaffolds: Effect of Surface Nanotopography on Cellular Functions. J Bioact Compat Polym 24, 507-524 (2009).

[64] H. Zreiqat, S. M. Valenzuela, B. B. Nissan, et al, The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26, 7579-7586 (2005).

[65] L. Ponsonnet, V. Comte, A. Othmane, et al, Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates. Mat Sci Eng C-Bio S 21, 157-165 (2002).

[66] J. B. Lian, G. S. Stein, Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3, 269-305 (1992).

[67] N. Fratzl-Zelman, P. Fratzl, H. Horandner, et al, Matrix mineralization in MC3T3- E1 cell cultures initiated by beta-glycerophosphate pulse. Bone 23, 511-520 (1998).

[68] C. H. Chung, E. E. Golub, E. Forbes, T. Tokuoka, I. M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif Tissue Int 51, 305-311 (1992).

[69] R. Shi, K. Hayashi, L. T. Bang, K. Ishikawa, Effects of surface roughening and calcite coating of titanium on cell growth and differentiation. J Biomater Appl 34, 917-927 (2020).

[70] D. Kabaso, E. Gongadze, S. Perutkova, et al, Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput Methods Biomech Biomed Engin 14, 469-482 (2011).

[71] C. H. Lohmann, L. F. Bonewald, M. A. Sisk, et al, Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J Bone Miner Res 15, 1169-1180 (2000).

[72] A. Wennerberg, T. Albrektsson, Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20 Suppl 4, 172-184 (2009).

[73] G. Y. Jung, Y. J. Park, J. S. Han, Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med 21, 1649-1654 (2010).

[74] S. An, J. Ling, Y. Gao, Y. Xiao, Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J Periodontal Res 47, 374-382 (2012).

[75] S. Ma, Y. Yang, D. L. Carnes, et al, Effects of dissolved calcium and phosphorous on osteoblast responses. J Oral Implantol 31, 61-67 (2005).

[76] S. Raghavendra, M. C. Wood, T. D. Taylor, Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20, 425-431 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る