リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical Formation of Nd-Fe Alloys in Molten LiF-CaF₂-NdF₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical Formation of Nd-Fe Alloys in Molten LiF-CaF₂-NdF₃

Kawaguchi, Kenji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac180e

2021.08

概要

In the present study, as a fundamental study for recycling Nd from Nd-Fe-B permanent magnet scrap, the electrochemical Nd-alloying behavior of Fe was investigated in a molten LiF-CaF₂-NdF₃ (0.3 or 0.5 mol%) system at 1123 K. Herein, the equilibrium potential of Nd³⁺/Nd was determined as 0.18 V (vs Li⁺/Li) by open-circuit potentiometry using a Mo electrode. Cyclic voltammetry and open-circuit potentiometry were conducted using an Fe electrode, and the results suggested the formation of multiple phases within the Nd-Fe alloys. Alloy samples were prepared via one- or two-step potentiostatic electrolysis of Fe electrodes at various potentials. The formation of liquid Nd-Fe alloy was confirmed through one-step potentiostatic electrolysis at 0.10 V. The solid Nd₂Fe₁₇ alloy was formed via a two-step potentiostatic electrolysis, wherein the potential was changed to 0.25 V after the initial electrolysis at 0.10 V, indicating that the Nd₂Fe₁₇ phase is thermodynamically stable at 0.25 V. The equilibrium potentials of the coexistence states of liq. Nd-Fe + Nd₂Fe₁₇ and Nd₂Fe₁₇ + Fe were determined as 0.19 and 0.31 V, respectively, which are in good agreement with the previously reported thermodynamic data.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Figure 10. XRD patterns of samples D, E, and F prepared by the

potentiostatic electrolysis of Fe plate electrodes in molten LiF-CaF2-NdF3

(0.50 mol%) at 1123 K. Electrolysis conditions: D = 0.10 V for 5 min, E =

0.10 V for 5 min and 0.25 V for 30 min, and F = 0.10 V for 5 min and

0.40 V for 30 min.

14.

15.

16.

17.

3+

E1 = E Nd

Nd —

RT

ln aNd,1 = 0.19 V

3F

3+

E Nd

Nd —

RT

ln aNd,2 = 0.28 V

3F

E2 =

18.

[3]

19.

20.

[ 4]

where ENd3+/Nd = 0.18 V (the result of Fig. 5), T = 1123 K, R =

8.314 J K−1 mol−1, and F = 9.64 × 104 C mol−1. The experimental

results obtained herein are consistent with the calculated equilibrium

potentials.

Conclusions

In the present study, as a fundamental study for recycling, the

electrochemical Nd-alloying behavior of Fe was investigated in a

molten LiF-CaF2-NdF3 (0.3 or 0.5 mol%) system at 1123 K. From

the open-circuit potentiometry of a Mo electrode, the equilibrium

potential of Nd3+/Nd was determined to be 0.18 V (vs Li+/Li).

Liquid Nd-Fe alloy formation occurred rapidly through potentiostatic electrolysis at 0.10 V, and majority of the 100-μm-thick Fe

plate electrode was alloyed after 60 min. In contrast, the rate of

formation of solid Nd2Fe17 alloy was significantly slow at 0.25 V.

However, once the liquid Nd-Fe alloy formation was established,

Nd2Fe17 could be readily formed through the anodic dissolution of

Nd. Based on the open-circuit potentiogram of an Fe electrode

alongside SEM, EDX, and XRD analysis, the equilibrium potentials

of coexistence states of liq. Nd-Fe + Nd2Fe17 and Nd2Fe17 + Fe

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

U.S. Geological Survey, Mineral Commodity Summaries, 132 (2020).

O. Takeda and T. H. Okabe, Metall. Mater. Trans. E, 1, 160 (2014).

Y. Xu, L. S. Chumbley, and F. C. Laabs, J. Mater. Res., 15, 2296 (2000).

T. Uda, K. T. Jacob, and M. Hirasawa, Science, 289, 2326 (2000).

O. Takeda, T. H. Okabe, and Y. Umetsu, J. Alloy. Compd., 379, 305 (2004).

S. Shirayama and T. H. Okabe, Molten Salts, 52, 71 (2009), [in Japanese].

O. Takeda, K. Nakano, and Y. Sato, Molten Salts, 52, 63 (2009), [in Japanese].

M. Matsumiya, H. Kondo, A. Kurachi, K. Tsunashima, and S. Kodama, J. Japan

Inst. Metals, 75, 607 (2011).

S. Shirayama and T. H. Okabe, Metall. Mater. Trans. B, 49, 1067 (2018).

T. Oishi, H. Konishi, and T. Nohira, Japan Pat., 5, 515 (2014).

T. Oishi, H. Konishi, T. Nohira, M. Tanaka, and T. Usui, Kagaku Kogaku

Ronbunshu, 36, 299 (2010), [in Japanese].

H. Konishi, H. Ono, T. Nohira, and T. Oishi, ECS Trans., 50, 463 (2012).

T. Nohira, S. Kobayashi, K. Kondo, K. Yasuda, R. Hagiwara, T. Oishi, and

H. Konishi, ECS Trans., 50, 473 (2012).

H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, ECS Trans., 64, 593

(2014).

H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Miner. Process. Extr.

Metall., 125, 216 (2016).

T. Oishi, M. Yaguchi, Y. Katasho, H. Konishi, and T. Nohira, J. Electrochem. Soc.,

167, 163505 (2020).

K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 92, 349

(2013).

K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 106, 293

(2013).

K. Yasuda, K. Kondo, T. Nohira, and R. Hagiwara, J. Electrochem. Soc., 161,

D3097 (2014).

K. Yasuda, K. Kondo, S. Kobayashi, T. Nohira, and R. Hagiwara, J. Electrochem.

Soc., 163, D140 (2016).

T. Nohira, S. Kobayashi, K. Kobayashi, R. Hagiwara, T. Oishi, and H. Konishi,

ECS Trans., 33, 205 (2010).

S. Kobayashi, K. Kobayashi, T. Nohira, R. Hagiwara, T. Oishi, and H. Konishi,

J. Electrochem. Soc., 158, E142 (2011).

S. Kobayashi, T. Nohira, K. Kobayashi, K. Yasuda, R. Hagiwara, T. Oishi, and

H. Konishi, J. Electrochem. Soc., 159, E193 (2012).

Y. Watanabe, Y. Norikawa, K. Yasuda, and T. Nohira, Mater. Trans., 60, 379

(2019).

K. Yasuda, T. Enomoto, Y. Watanabe, T. Oishi, and T. Nohira, Mater. Trans., 61,

2329 (2020).

A. Kuriyama, K. Hosokawa, H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and

T. Oishi, ECS Trans., 75, 341 (2016).

H. Tamamura, T. Shimo-oka, and M. Utsunomiya, Proceedings of The

Electrochemical Society, PV 1990-17, 611 (1990).

J. Lucas, P. Lucas, T. Le Mercier, A. Rollat, and W. Davenport, Rare Earths:

Science, Technology, Production and Use (Elsevier, Amsterdam) (2015).

Y. Yang, R. Zhao, and Z. Zhao, Sep. Purif. Technol., 257, 117882 (2021).

H. Okamoto, J. Phase Equilib. Diffus., 35, 195 (2014).

K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem.

Soc., 162, D444 (2015).

C. Nourry, L. Massot, P. Chamelot, and P. Taxil, J. New Mat. Electrochem.

Systems, 10, 117 (2007).

T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy

Phase Diagrams (ASM International, Materials Park, Ohio) 2nd ed. (1990), CDROM version 1.0.

H. Konishi, T. Nohira, and Y. Ito, Electrochim. Acta, 47, 3533 (2002).

T. L. Chen, J. Wang, M. H. Rong, G. H. Rao, and H. Y. Zhou, CALPHAD: Comput.

Coupling Phase Diagrams Thermochem., 55, 270 (2016).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る