リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical Formation of Nd–Ni Alloys in Molten CaCl₂–NdCl₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical Formation of Nd–Ni Alloys in Molten CaCl₂–NdCl₃

Hua, Hang Yasuda, Kouji Konishi, Hirokazu Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/abed26

2021.03

概要

Published on behalf of The Electrochemical Society by IOP Publishing Limited. The electrochemical formation of Neodymium–Nickel (Nd–Ni) alloys was investigated in a molten CaCl₂–NdCl₃ (1.0 mol%) system at 1123 K. Cyclic voltammograms for Molybdenum (Mo) and Ni electrodes showed the electrodeposition/dissolution of metallic Nd and the formation/dissolution of Nd–Ni alloys, respectively. The equilibrium potential of Nd³³+/Nd was determined at 0.27 V (vs. Ca²²+/Ca) by open-circuit potentiometry for a Mo electrode. The potentials of 0.48, 0.68, and 0.95 V, corresponding to the two-phase coexisting states of (NdNi₂ + NdNi₃), (NdNi₃ + NdNi₅), and (NdNi₅ + Ni), respectively, were confirmed using energy-dispersive X-ray spectroscopy and X-ray diffraction of the Ni electrode electrolyzed samples. The optimum electrolysis conditions for the Nd and Dysprosium (Dy) separation were discussed, and the standard Gibbs energies of formation were calculated for Nd–Ni alloys.

この論文で使われている画像

参考文献

1. Y. Seo and S. Morimoto, Resour. Policy, 39, 15 (2014).

2. Mineral Commodity Summaries 2020 (U. S. Geological Survey, Reston, VA) 132

(2020).

3. O. Takeda and T. H. Okabe, Metall. Mater. Trans. E, 1, 160 (2014).

4. G. Adachi, K. Murase, K. Shinozaki, and K. Machida, Chem. Lett., 21, 511 (1992).

5. K. Murase, K. Shinozaki, Y. Hirashima, K. Machida, and G. Adachi, J. Alloy.

Compd., 198, 31 (1993).

6. T. Ozaki, J. Jiang, K. Murase, K. Machida, and G. Adachi, J. Alloy. Compd., 265,

125 (1998).

7. T. Uda, K. T. Jacob, and M. Hirasawa, Science, 289, 2326 (2000).

8. T. H. Okabe, O. Takeda, K. Fukuda, and Y. Umetsu, Mater. Trans., 44, 798 (2003).

9. T. Saito, H. Sato, S. Ozawa, J. Yu, and T. Motegi, J. Alloy. Compd., 353, 189 (2003).

10. M. Itoh, M. Masuda, S. Suzuki, and K.-I. Machida, J. Alloy. Compd., 374, 393 (2004).

11. O. Takeda, T. H. Okabe, and Y. Umetsu, J. Alloy. Compd., 379, 305 (2004).

12. Y. Xu, L. S. Chumbley, and F. C. Laabs, J. Mater. Res., 15, 2296 (2011).

13. W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, and K. Hono, Acta Mater., 59,

3061 (2011).

14. J. P. Rabatho, W. Tongamp, Y. Takasaki, K. Haga, and A. Shibayama, J. Mater.

Cycles Waste Manage., 15, 171 (2012).

15. B. Pulko, X. Yang, Z. Lei, S. Odenbach, and K. Eckert, Appl. Phys. Lett., 105,

232407 (2014).

16. H. J. Chae, Y. D. Kim, B. S. Kim, J. G. Kim, and T.-S. Kim, J. Alloy. Compd., 586,

S143 (2014).

17. H. Sekimoto, T. Kubo, and K. Yamaguchi, J. MMIJ, 130, 494 (2014).

18. O. Takeda, K. Nakano, and Y. Sato, Mater. Trans., 55, 334 (2014).

19. T. Akahori, Y. Miyamoto, T. Saeki, M. Okamoto, and T. H. Okabe, J. Alloy.

Compd., 703, 337 (2017).

20. A. Lixandru, I. Poenaru, K. Güth, R. Gauß, and O. Gutfleisch, J. Alloy. Compd.,

724, 51 (2017).

21. X. Yin et al., Engineering, 6, 165 (2020).

22. Y. Sawada, K. Yasuda, and R. Hagiwara, The 84th ECSJ Spring Meeting,

Abstr1B32 (2017).

23. T. Awazu, T. Sugihara, M. Majima, T. Nohira, R. Hagiwara, and S. Kobayashi, Element

recovery method and element recovery apparatus, U.S. Patent 10309022 (2019).

24. H. Konishi, T. Nohira, and Y. Ito, J. Electrochem. Soc., 148, C506 (2001).

25. H. Konishi, T. Nishikiori, T. Nohira, and Y. Ito, Electrochim. Acta, 48, 1403 (2003).

26. H. Konishi, H. Ono, T. Nohira, and T. Oishi, ECS Trans., 50, 463 (2012).

27. K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 92, 349

(2013).

28. K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 106, 293

(2013).

29. K. Yasuda, K. Kondo, S. Kobayashi, T. Nohira, and R. Hagiwara, J. Electrochem.

Soc., 163, D140 (2016).

30. S. Kobayashi, K. Kobayashi, T. Nohira, R. Hagiwara, T. Oishi, and H. Konishi,

J. Electrochem. Soc., 158, E142 (2011).

31. S. Kobayashi, T. Nohira, K. Kobayashi, K. Yasuda, R. Hagiwara, T. Oishi, and

H. Konishi, J. Electrochem. Soc., 159, E193 (2012).

32. T. Nohira, S. Kobayashi, K. Kondo, K. Yasuda, R. Hagiwara, T. Oishi, and

H. Konishi, ECS Trans., 50, 473 (2012).

33. H. Hua, K. Yasuda, H. Konishi, and T. Nohira, J. Electrochem. Soc., 167, 142504

(2020).

34. M. Huang, R. W. McCallum, and T. A. Lograsso, J. Alloy. Compd., 398, 127 (2005).

35. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy

Phase Diagrams (ASM International, Materials Park, Ohio) 2nd ed. (1990), CDROM version 1.0.

36. H. Okamoto, J. Phase Equilib. Diffus., 36, 390 (2015).

37. A. V. Virkar and A. Raman, J. Less-Common Metals, 18, 59 (1969).

38. D. T. Cromer and C. E. Olsen, Acta Crystallogr., 12, 689 (1959).

39. C. Nourry, L. Massot, P. Chamelot, and P. Taxil, J. New Mater. Electrochem. Syst.,

10, 117 (2007).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る