リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「吸着除湿のためのバイオマス由来活性炭の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

吸着除湿のためのバイオマス由来活性炭の開発

チャイルンニサ CHAIRUNNISA 九州大学

2022.03.23

概要

Desiccant dehumidification systems can be utilized for decoupling moisture removal duty from conventional mechanical vapor compression systems. Dehumidification using desiccant dehumidifiers is expected to exhibit a better energy efficiency. However, the high energy needed in the regeneration process limits its applicability. To realize the full potential of this technology, it is necessary to develop materials that can be regenerated using low grade heat source such as waste heat and solar heat.

In this study, activated carbons (ACs) derived from waste biomass were developed as desiccant materials. The ability of activated carbon (AC) to remove the moisture was controlled by carefully preparing the material to achieve the right operation window for optimum moisture sorption processes. Different types of biomass waste were utilized, such as fallen leaves and nutshells. Camphor leaves were chosen to represent fallen leaves, while acorn nutshells and walnut shells were chosen for nuts-based biomass. Indeed, different biomass and various preparation conditions obtained ACs with different properties. Among those three biomass, acorn nutshells and walnut shells showed promising results in terms of surface properties and water adsorption uptake. According to the results, physical activation by steam and CO2 followed with air oxidation could produce ACs with high surface area and pore volume, which consequently enhancing the water adsorption properties of that material.

The efficacy of the ACs for dehumidification applications was assessed using the weather data from several regions of Indonesia, from North Sumatera to Papua. The results revealed that under the studied conditions, the new desiccant material showed a better dehumidification capacity than silica gel. Moreover, the reported AC can be regenerated using temperatures as low as 40oC, which is readily available from waste heat, including the heat rejection from the condenser of an air-conditioning unit.

この論文で使われている画像

参考文献

[1] ASHRAE Standard, “Thermal Environmental Conditions for Human Oc- cupancy 55-2004,” American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc., vol. 2004, no. ANSI/ASHRAE Standard 55- 2004, pp. 1–34, 2004.

[2] T. Miyazaki, T. Oda, M. Ito, N. Kawasaki, and I. Nikai, “The Possibility of the Energy Cost Savings by the Electricity Driven Desiccant System with a High Performance Evaporative Cooler,” pp. 174–180, 2012.

[3] B. Ahmadi, M. Ahmadi, K. Nawaz, A. M. Momen, and S. Bigham, “Perfor- mance Analysis and Limiting Parameters of a Cross-flow Membrane-based Liquid-desiccant Air Dehumidifiers,” International Journal of Refrigeration, 2021. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2021.09.010

[4] B. Su, W. Han, J. Sui, and H. Jin, “Feasibility of a two-stage liquid desiccant dehumidification system driven by low-temperature heat and power,” Applied Thermal Engineering, vol. 128, pp. 795–804, 2018. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2017.09.048

[5] H. Liu, H. Yang, and R. Qi, “A review of electrically driven dehumidification technology for air-conditioning systems,” Applied En- ergy, vol. 279, no. May, p. 115863, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.115863

[6] Y. Luo, B. Tan, X. Liang, S. Wang, X. Gao, Z. Zhang, and Y. Fang, “Dry gel conversion synthesis and performance of glass-fiber MIL-100(Fe) composite desiccant material for dehumidification,” Microporous and Mesoporous Materials, vol. 297, no. December 2019, p. 110034, 2020. [Online]. Available: https://doi.org/10.1016/j.micromeso.2020.110034

[7] H. Furukawa, F. Gándara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, and O. M. Yaghi, “Water adsorption in porous metal-organic frameworks and related materials,” Journal of the American Chemical Society, vol. 136, no. 11, pp. 4369–4381, 2014.

[8] S. Y. Ahmed, P. Gandhidasan, and A. A. Al-Farayedhi, “Thermodynamic analysis of liquid desiccants,” Solar Energy, vol. 62, no. 1, pp. 11–18, 1998.

[9] X. H. Liu, X. Q. Yi, and Y. Jiang, “Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions,” Energy Conversion and Management, vol. 52, no. 1, pp. 180–190, 2011.

[10] Y. J. Dai and H. F. Zhang, “Numerical simulation and theoretical analysis of heat and mass transfer in a cross flow liquid desiccant air dehumidifier packed with honeycomb paper,” Energy Conversion and Management, vol. 45, no. 9-10, pp. 1343–1356, 2004.

[11] X. W. Li, X. S. Zhang, and S. Quan, “Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system,” Applied Energy, vol. 88, no. 12, pp. 4908–4917, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2011.06.052

[12] E. Elsarrag, “Dehumidification of air by chemical liquid desiccant in a packed column and its heat and mass transfer effectiveness,” HVAC and R Research, vol. 12, no. 1, pp. 3–16, 2006.

[13] L. Pistocchini, S. Garone, and M. Motta, “Air dehumidification by cooled ad- sorption in silica gel grains. Part I: Experimental development of a prototype,” Applied Thermal Engineering, vol. 107, pp. 888–897, aug 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1359431116310171 http://dx.doi.org/10.1016/j.applthermaleng.2016.06.103

[14] W. K. Mekhamer, “Energy storage through adsorption and des- orption of water vapour in raw Saudi bentonite,” Arabian Jour- nal of Chemistry, vol. 9, pp. S264–S268, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.arabjc.2011.03.021

[15] T. Ouchi, Y. Hamamoto, H. Mori, S. Takata, and A. Etoh, “Water vapor adsorption equilibrium and adsorption/desorption rate of porous alumina film adsorbent synthesized with anodization on heat transfer plate,” Applied Thermal Engineering, vol. 72, no. 2, pp. 219–228, nov 2014. [Online]. Available: http://dx.doi.org/10.1016/j.applthermaleng.2014.05.091 https://linkinghub.elsevier.com/retrieve/pii/S1359431114004670

[16] S. D. White, M. Goldsworthy, R. Reece, T. Spillmann, A. Gorur, and D. Y. Lee, “Characterization of desiccant wheels with alternative materials at low regeneration temperatures,” International Journal of Refrigeration, vol. 34, no. 8, pp. 1786–1791, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.ijrefrig.2011.06.012

[17] A. Bazan, P. Nowicki, P. Półrolniczak, and R. Pietrzak, “Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops,” Journal of Thermal Analysis and Calorimetry, vol. 125, no. 3, pp. 1199–1204, 2016.

[18] T. Asada, S. Ishihara, T. Yamane, A. Toba, A. Yamada, and K. Oikawa, “Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases,” Journal of Health Science, vol. 48, no. 6, pp. 473–479, 2002.

[19] J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and ap- plication of Granular activated carbon from biomass waste materials for water treatment: A review,” Journal of Bioresources and Bioproducts, no. December 2020, 2021. [Online]. Available: https://doi.org/10.1016/j.jobab.2021.03.003

[20] S. S. Kiani, A. Farooq, Y. Faiz, A. Shah, M. Ahmad, N. Irfan, M. Iqbal, A. B. Usman, A. Mahmood, M. Nawaz, S. Bibi, and A. Aziz, “Investigation of Cu/Zn/Ag/Mo-based impregnated activated carbon for the removal of toxic gases, synthesized in aqueous media,” Diamond and Related Materials, vol. 111, no. June 2020, p. 108179, 2021. [Online]. Available: https://doi.org/10.1016/j.diamond.2020.108179

[21] L. S. Queiroz, L. K. de Souza, K. T. C. Thomaz, E. T. Leite Lima, G. N. da Rocha Filho, L. A. S. do Nascimento, L. H. de Oliveira Pires, K. d. C. F. Faial, and C. E. da Costa, “Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water,” Journal of Environmental Management, vol. 270, no. January, p. 110868, 2020. [Online]. Available: https://doi.org/10.1016/j.jenvman.2020.110868

[22] T. Matsushita, H. Suzuki, N. Shirasaki, Y. Matsui, and K. Ohno, “Adsorptive virus removal with super-powdered activated carbon,” Separation and Purification Technology, vol. 107, pp. 79–84, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.seppur.2013.01.017

[23] D. Xu, P. Xiao, J. Zhang, G. Li, G. Xiao, P. A. Webley, and Y. Zhai, “Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon,” Chemical Engineering Journal, vol. 230, pp. 64–72, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.cej.2013.06.080

[24] I. I. Laskar, Z. Hashisho, J. H. Phillips, J. E. Anderson, and M. Nichols, “Competitive adsorption equilibrium modeling of volatile organic compound (VOC) and water vapor onto activated carbon,” Separation and Purification Technology, vol. 212, no. November 2018, pp. 632–640, 2019. [Online]. Available: https://doi.org/10.1016/j.seppur.2018.11.073

[25] M. Bora, S. M. Benoy, J. Tamuly, and B. K. Saikia, “Ultrasonic-assisted chemical synthesis of activated carbon from low-quality subbituminous coal and its preliminary evaluation towards supercapacitor applications,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, p. 104986, 2021. [Online]. Available: https://doi.org/10.1016/j.jece.2020.104986

[26] C. L. Lee, K. L. Chin, P. S. H’ng, U. Rashid, M. Maminski, and P. S. Khoo, “Effect of pretreatment conditions on the chemical–structural characteristics of coconut and palm kernel shell: A potentially valuable precursor for eco- efficient activated carbon production,” Environmental Technology and Inno- vation, vol. 21, 2021.

[27] A. M. Abioye and F. N. Ani, “Recent development in the production of acti- vated carbon electrodes from agricultural waste biomass for supercapacitors: A review,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1282–1293, 2015.

[28] N. Mohamad Nor, L. C. Lau, K. T. Lee, and A. R. Mohamed, “Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review,” Journal of Environmental Chemical Engineering, vol. 1, no. 4, pp. 658–666, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jece.2013.09.017

[29] J. F. Gonzalez, S. Roman, C. M. Gonzalez-Garcia, J. M. Valente Nabais, and A. L. Ortiz, “Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation,” Industrial & Engineering Chemistry Research, vol. 48, no. 20, pp. 9354–9354, oct 2009. [Online]. Available: https://pubs.acs.org/doi/10.1021/ie9013293

[30] J. Alcañiz-Monge, A. Linares-Solano, and B. Rand, “Mechanism of Adsorption of Water in Carbon Micropores As Revealed by a Study of Activated Carbon Fibers,” The Journal of Physical Chemistry B, vol. 106, no. 12, pp. 3209–3216, mar 2002. [Online]. Available: https://pubs.acs.org/doi/10.1021/jp014388b

[31] U. S. Im, J. Kim, S. H. Lee, S. mi Lee, B. R. Lee, D. H. Peck, and D. H. Jung, “Preparation of activated carbon from needle coke via two-stage steam activation process,” Materials Letters, vol. 237, pp. 22–25, 2019.

[32] R. Ma, X. Qin, Z. Liu, and Y. Fu, “Adsorption property, kinetic and equilib- rium studies of activated carbon fiber prepared from liquefied wood by Zncl 2 activation,” Materials, vol. 12, no. 9, 2019.

[33] S. X. Jin, Q. F. Yu, M. Li, S. N. Sun, H. Zhao, Y. W. Huang, and J. Fan, “Quantitative evaluation of carbon materials for humidity buffering in a novel dehumidification shutter system powered by solar energy,” Building and En- vironment, vol. 194, no. October 2020, 2021.

[34] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, and D. F. Quinn, “Activated carbon monoliths for methane storage: Influence of binder,” Car- bon, vol. 40, no. 15, pp. 2817–2825, 2002.

[35] R. J. White, V. Budarin, R. Luque, J. H. Clark, and D. J. Macquarrie, “Tune- able porous carbonaceous materials from renewable resources,” Chemical So- ciety Reviews, vol. 38, no. 12, pp. 3401–3418, 2009.

[36] S. M. Shaheen, N. K. Niazi, N. E. E. Hassan, I. Bibi, H. Wang, D. C. W. Tsang, Y. S. Ok, N. Bolan, and J. Rinklebe, “Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review,” International Materials Reviews, vol. 64, no. 4, pp. 216–247, may 2019. [Online]. Available: https://doi.org/10.1080/09506608.2018.1473096 https://www.tandfonline.com/doi/full/10.1080/09506608.2018.1473096

[37] M. U. Dural, L. Cavas, S. K. Papageorgiou, and F. K. Katsaros, “Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies,” Chemical Engineering Journal, vol. 168, no. 1, pp. 77–85, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.cej.2010.12.038

[38] M. Sevilla and R. Mokaya, “Energy storage applications of activated carbons: Supercapacitors and hydrogen storage,” Energy and Environmental Science, vol. 7, no. 4, pp. 1250–1280, 2014.

[39] R. T. Ayinla, J. O. Dennis, H. M. Zaid, Y. K. Sanusi, F. Usman, and L. L. Adebayo, “A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage,” Journal of Cleaner Production, vol. 229, pp. 1427–1442, 2019.

[40] N. Miriyala, D. Ouyang, Y. Perrie, D. Lowry, and D. J. Kirby, “Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability,” European Journal of Pharmaceutics and Biopharma- ceutics, vol. 115, pp. 197–205, 2017.

[41] Z. L. Yaneva, L. L. Bekirska, N. V. Georgieva, B. K. Derventlieva, I. D. Gan- dev, C. Unit, A. Physiology, S. Zagora, K. Village, and N. Zagora, “Activated Carbon From Fruit Stones As Ibuprofen Carrier - Encapsulation and in Vitro Release Study,” vol. 1477, no. 2013, pp. 8–12, 2017.

[42] Y. Gao, Q. Yue, B. Gao, and A. Li, “Insight into activated carbon from different kinds of chemical activating agents: A review,” Science of the Total Environment, vol. 746, p. 141094, 2020. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2020.141094

[43] A. Kruse, A. Funke, and M. M. Titirici, “Hydrothermal conversion of biomass to fuels and energetic materials,” Current Opinion in Chem- ical Biology, vol. 17, no. 3, pp. 515–521, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.cbpa.2013.05.004

[44] O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, and E. Sabolsky, “Influence of one-step and two-step KOH activation on activated carbon characteristics,” Bioresource Technology Reports, vol. 7, p. 100266, 2019.

[45] L. Spessato, K. C. Bedin, A. L. Cazetta, I. P. Souza, V. A. Duarte, L. H. Crespo, M. C. Silva, R. M. Pontes, and V. C. Almeida, “KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles,” Journal of Hazardous Materials, vol. 371, no. December 2018, pp. 499–505, 2019. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2019.02.102

[46] K. Ö. Köse, B. Pişkin, and M. K. Aydınol, “Chemical and structural opti- mization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications,” International Journal of Hydrogen Energy, vol. 43, no. 40, pp. 18 607–18 616, 2018.

[47] D. Hong, J. Zhou, C. Hu, Q. Zhou, J. Mao, and Q. Qin, “Mercury removal mechanism of AC prepared by one-step activation with ZnCl2,” Fuel, vol. 235, no. July 2018, pp. 326–335, 2019. [Online]. Available: https://doi.org/10.1016/j.fuel.2018.07.103

[48] D. W. Kim, H. S. Kil, K. Nakabayashi, S. H. Yoon, and J. Miyawaki, “Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model,” Carbon, vol. 114, pp. 98–105, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.carbon.2016.11.082

[49] V. Benedetti, F. Patuzzi, and M. Baratieri, “Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications,” Applied Energy, vol. 227, no. May 2017, pp. 92–99, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2017.08.076

[50] J. Yang and K. Qiu, “Experimental design to optimize the preparation of ac- tivated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation,” Industrial and Engineering Chemistry Research, vol. 50, no. 7, pp. 4057–4064, 2011.

[51] K. Fu, Q. Yue, B. Gao, Y. Sun, and L. Zhu, “Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation,” Chemical Engineering Journal, vol. 228, pp. 1074–1082, 2013.

[52] Y. Kan, Q. Yue, B. Gao, and Q. Li, “Preparation of epoxy resin-based acti- vated carbons from waste printed circuit boards by steam activation,” Mate- rials Letters, vol. 159, pp. 443–446, 2015.

[53] J. Yang and K. Q. Qiu, “Preparation of activated carbon by chemical activation under vacuum,” Environmental Science and Technology, vol. 43, no. 9, pp. 3385–3390, 2009.

[54] P. T. Williams and A. R. Reed, “Development of activated carbon pore struc- ture via physical and chemical activation of biomass fibre waste,” Biomass and Bioenergy, vol. 30, no. 2, pp. 144–152, 2006.

[55] E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chemical Engineering Research and Design, vol. 129, pp. 271–296, 2018. [Online]. Available: http://dx.doi.org/10.1016/j.cherd.2017.11.008

[56] M. Kwiatkowski and E. Broniek, “An analysis of the porous structure of acti- vated carbons obtained from hazelnut shells by various physical and chemical methods of activation,” Colloids and Surfaces A: Physicochemical and Engi- neering Aspects, vol. 529, no. June, pp. 443–453, 2017.

[57] Y. Guangzhi, Y. Jinyu, Y. Yuhua, T. Zhihong, Y. DengGuang, and Y. Junhe, “Preparation and CO 2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation,” RSC Advances, vol. 7, no. 7, pp. 4152–4160, 2017. [Online]. Available: http://xlink.rsc.org/?DOI=C6RA25303B

[58] D. Li, T. Ma, R. Zhang, Y. Tian, and Y. Qiao, “Preparation of porous carbons with high low-pressure CO2uptake by KOH activation of rice husk char,” Fuel, vol. 139, pp. 68–70, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.fuel.2014.08.027

[59] A. Rahman, H. J. Hango, L. S. Daniel, V. Uahengo, S. J. Jaime, S. V. Bhaskaruni, and S. B. Jonnalagadda, “Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: An environmentally benevolent approach,” Journal of Cleaner Production, vol. 237, p. 117689, nov 2019. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.117689 https://linkinghub.elsevier.com/retrieve/pii/S0959652619325399

[60] M. J. Prauchner, K. Sapag, and F. Rodríguez-Reinoso, “Tailoring biomass- based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2,” Carbon, vol. 110, pp. 138– 147, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.carbon.2016.08.092

[61] R. Bardestani and S. Kaliaguine, “Steam activation and mild air oxidation of vacuum pyrolysis biochar,” Biomass and Bioenergy, vol. 108, no. October 2017, pp. 101–112, 2018. [Online]. Available: https://doi.org/10.1016/j.biombioe.2017.10.011

[62] Y. J. Zhang, Z. J. Xing, Z. K. Duan, M. Li, and Y. Wang, “Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste,” Applied Surface Science, vol. 315, no. 1, pp. 279– 286, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.apsusc.2014.07.126

[63] S. H. Jung and J. S. Kim, “Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2,” Journal of Analytical and Applied Pyrolysis, vol. 107, pp. 116–122, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jaap.2014.02.011

[64] G. Selvaraju and N. K. A. Bakar, “Process conditions for the manufacture of highly micro-mesoporous eco-friendly activated carbon from artocarpus integer bio-waste by steam activation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 93, pp. 414–426, 2018.

[65] M. Molina-Sabio, M. T. González, F. Rodriguez-Reinoso, and A. Sepúlveda- Escribano, “Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon,” Carbon, vol. 34, no. 4, pp. 505–509, 1996.

[66] W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, “Effects of carboniza- tion temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars,” vol. 8, pp. 190–198, 2008.

[67] Y. R. Son and S. J. Park, “Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via en- hanced steam activation strategy,” Materials Chemistry and Physics, vol. 242, no. August 2019, p. 122454, 2020. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2019.122454

[68] Y. Zhu, J. Gao, Y. Li, F. Sun, J. Gao, S. Wu, and Y. Qin, “Preparation of activated carbons for SO 2 adsorption by CO 2 and steam activation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, no. 1, pp. 112–119, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jtice.2011.06.009

[69] J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physi- cal activation with carbon dioxide and steam,” Biomass and Bioen- ergy, vol. 115, no. January, pp. 64–73, 2018. [Online]. Available: https://doi.org/10.1016/j.biombioe.2018.04.015

[70] B. Petrovic, M. Gorbounov, and S. Masoudi Soltani, “Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods,” Microporous and Mesoporous Materials, vol. 312, no. September 2020, p. 110751, 2021. [Online]. Available: https://doi.org/10.1016/j.micromeso.2020.110751

[71] J. Jaramillo, P. M. Álvarez, and V. Gómez-Serrano, “Oxidation of activated carbon by dry and wet methods surface chemistry and textural modifications,” Fuel Processing Technology, vol. 91, no. 11, pp. 1768–1775, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.fuproc.2010.07.018

[72] L. Liu, S. J. Tan, T. Horikawa, D. D. Do, D. Nicholson, and J. Liu, “Water adsorption on carbon - A review,” Advances in Colloid and Interface Science, vol. 250, pp. 64–78, 2017.

[73] A. Mamaní, M. F. Sardella, M. Giménez, and C. Deiana, “Highly microporous carbons from olive tree pruning: Optimization of chemical activation conditions,” Journal of Environmental Chemical Engineering, vol. 7, no. 1, p. 102830, 2019. [Online]. Available: https://doi.org/10.1016/j.jece.2018.102830

[74] A. A. Mohammed, C. Chen, and Z. Zhu, “Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells,” Journal of Colloid and Interface Science, vol. 538, pp. 308–319, 2019. [Online]. Available: https://doi.org/10.1016/j.jcis.2018.11.103

[75] Y. Guangzhi, Y. Jinyu, Y. Yuhua, T. Zhihong, Y. DengGuang, and Y. Junhe, “Preparation and CO2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide ac- tivation,” RSC Advances, vol. 7, no. 7, pp. 4152–4160, 2017.

[76] E. A. Khan, Shahjahan, and T. A. Khan, “Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies,” Journal of Molecular Liquids, vol. 249, pp. 1195–1211, 2018. [Online]. Available: https://doi.org/10.1016/j.molliq.2017.11.125

[77] A. Heidari, H. Younesi, A. Rashidi, and A. A. Ghoreyshi, “Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment,” Chemical Engineering Journal, vol. 254, pp. 503–513, 2014.

[78] J. F. González, S. Román, C. M. González-García, J. M. Nabais, and A. L. Or- tiz, “Erratum: Porosity development in activated carbons prepared from wal- nut shells by carbon dioxide or steam activation (Ind. Eng. Chem. Res.(2009) 48:16 (9354) 10.1021/ie9013293),” Industrial and Engineering Chemistry Re- search, vol. 48, no. 20, p. 9354, 2009.

[79] H. Zhao, Q. Yu, M. Li, and S. Sun, “Preparation and water vapor adsorption of “green” walnut-shell activated carbon by CO2 physical activation,” Adsorption Science and Technology, vol. 38, no. 1-2, pp. 60–76, mar 2020. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0263617419900849

[80] C. F. Chang, C. Y. Chang, and W. T. Tsai, “Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam,” Journal of Colloid and Interface Science, vol. 232, no. 1, pp. 45–49, 2000.

[81] C. Bouchelta, M. S. Medjram, O. Bertrand, and J. P. Bellat, “Preparation and characterization of activated carbon from date stones by physical activation with steam,” Journal of Analytical and Applied Pyrolysis, vol. 82, no. 1, pp. 70–77, 2008.

[82] B. Cagnon, X. Py, A. Guillot, F. Stoeckli, and G. Chambat, “Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors,” Bioresource Technology, vol. 100, no. 1, pp. 292–298, 2009.

[83] O. Üner and Y. Bayrak, “The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax,” Microporous and Mesoporous Materials, vol. 268, no. March, pp. 225–234, 2018. [Online]. Available: https://doi.org/10.1016/j.micromeso.2018.04.037

[84] C. W. Purnomo, C. Salim, and H. Hinode, “Effect of the activation method on the properties and adsorption behavior of bagasse fly ash-based activated carbon,” Fuel Processing Technology, vol. 102, pp. 132–139, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.fuproc.2012.04.037

[85] S. Brunauer, P. H. Emmett, and E. Teller, “in Multimolecular,” J. Am.Chem.Soc., vol. 60, no. 2, pp. 309–319, 1938.

[86] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Re- port),” Pure and Applied Chemistry, vol. 87, no. 9-10, pp. 1051–1069, oct 2015. [Online]. Available: https://www.degruyter.com/document/doi/10.1515/pac- 2014-1117/html

[87] M. Thommes and K. A. Cychosz, “Physical adsorption characterization of nanoporous materials: progress and challenges,” Adsorption, vol. 20, pp. 233– 250, 2014.

[88] P. A. Monson, “Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular mod- els and classical density functional theory,” Microporous and Meso- porous Materials, vol. 160, pp. 47–66, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.micromeso.2012.04.043

[89] J. Landers, G. Y. Gor, and A. V. Neimark, “Density functional theory methods for characterization of porous materials,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 437, pp. 3–32, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.colsurfa.2013.01.007

[90] H. Marsh and F. R. Reinoso, Activated carbon. Elsevier science, 2006.

[91] Teresa J. Bandosz, Activated Carbon Surfaces in Environmental Remediation, Volume 7 1st Edition. Academic Press, 2006.

[92] B. Sellergren, Molecularly Imprinted Polymers, Volume 23 1st Edition Man- Made Mimics of Antibodies and their Application in Analytical Chemistry. Elsevier Science, 2000.

[93] C. V and E. Kandare, “Rigid biofoam composites as eco-efficient construction materials,” in Biopolymers and Biotech Admixtures for Eco-Efficient Construc- tion Materials. Woodhead Publishing, 2016, ch. 13, pp. 275–304.

[94] K. K.Swain, “Chapter 13 - A Corelation Between the Graphene Surface Area, Functional Groups, Defects, and Porosity on the Performance of the Nanocom- posites,” in Functionalized Graphene Nanocomposites and their Derivatives Synthesis, Processing and Applications Micro and Nano Technologies. Else- vier, 2019, ch. 13, pp. 265–283.

[95] Y. J. Zhang, Z. J. Xing, Z. K. Duan, M. Li, and Y. Wang, “Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste,” Applied Surface Science, vol. 315, no. 1, pp. 279– 286, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.apsusc.2014.07.126

[96] T. Horikawa, S. J. Tan, D. D. Do, K. I. Sotowa, J. R. Alcántara-Avila, and D. Nicholson, “Temperature dependence of water adsorption on highly graphi- tized carbon black and highly ordered mesoporous carbon,” Carbon, vol. 124, pp. 271–280, 2017.

[97] X. Yao, L. Li, H. Li, S. He, Z. Liu, and W. Ma, “A new model for calculating the adsorption equilibrium constant of water vapor in micropores of activated carbon,” Computational Materials Science, vol. 89, pp. 137–141, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.commatsci.2014.03.037

[98] T. Ohba, “Size-dependent water structures in carbon nanotubes,” Angewandte Chemie - International Edition, vol. 53, no. 31, pp. 8032–8036, 2014.

[99] J. Wang and X. Guo, “Adsorption isotherm models: Classifica- tion, physical meaning, application and solving method,” Chemo- sphere, vol. 258, no. July, p. 127279, 2020. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2020.127279

[100] N. Tzabar and H. J. ter Brake, “Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride,” Adsorption, vol. 22, no. 7, pp. 901–914, 2016.

[101] S. G. Chen and R. T. Yang, “Theoretical Basis for the Potential Theory Ad- sorption Isotherms. The Dubinin–Radushkevich and Dubinin–Astakhov Equa- tions,” Langmuir, vol. 10, no. 11, pp. 4244–4249, 1994.

[102] Y. D. Kim, K. Thu, and K. C. Ng, “Adsorption characteris- tics of water vapor on ferroaluminophosphate for desalination cy- cle,” Desalination, vol. 344, pp. 350–356, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.desal.2014.04.009

[103] D. D. Do, S. Junpirom, and H. D. Do, “A new adsorption-desorption model for water adsorption in activated carbon,” Carbon, vol. 47, no. 6, pp. 1466–1473, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.carbon.2009.01.039

[104] D. D. Do and H. D. Do, “Model for water adsorption in activated carbon,” Carbon, vol. 38, no. 5, pp. 767–773, 2000.

[105] M. Neitsch, W. Heschel, and M. Suckow, “Water vapor adsorption by activated carbon: A modification to the isotherm model of Do and Do,” Carbon, vol. 39, no. 9, pp. 1437–1438, 2001.

[106] B. Guan, T. Zhang, L. Jun, and X. Liu, “Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study,” Energy, vol. 196, p. 117122, 2020. [Online]. Available: https://doi.org/10.1016/j.energy.2020.117122

[107] X. Chen, S. Riffat, H. Bai, X. Zheng, and D. Reay, “Recent progress in liquid desiccant dehumidification and air-conditioning: A review,” Energy and Built Environment, vol. 1, no. 1, pp. 106–130, 2020.

[108] J. D. Liang, B. H. Huang, Y. C. Chiang, and S. L. Chen, “Experimental investigation of a liquid desiccant dehumidification system integrated with shallow geothermal energy,” Energy, vol. 191, p. 116452, 2020. [Online]. Available: https://doi.org/10.1016/j.energy.2019.116452

[109] A. Y, “Adsorption,” in Encyclopedia of Ecology, 2008, pp. 60–65.

[110] R. H, I, “PASSIVE AND LOW-ENERGY RESEARCH AND PRACTICES-DEHUMIDIFICATION,” in Passive and Low Energy Ecotechniques, 1985, pp. 88–120.

[111] G. Bulut, M. Chimeddorj, F. Esenli, and M. S. Çelik, “Production of desiccants from Turkish bentonites,” Applied Clay Science, vol. 46, no. 2, pp. 141–147, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.clay.2009.07.013

[112] C. X. Jia, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material,” Energy Conversion and Management, vol. 47, no. 15-16, pp. 2523–2534, 2006.

[113] X. J. Zhang, K. Sumathy, Y. J. Dai, and R. Z. Wang, “Dynamic hygroscopic effect of the composite material used in desiccant rotary wheel,” Solar Energy, vol. 80, no. 8, pp. 1058–1061, 2006.

[114] G. A. Longo and A. Gasparella, “Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant,” International Journal of Heat and Mass Transfer, vol. 48, no. 25- 26, pp. 5240–5254, 2005.

[115] X. Liu, M. Qu, X. Liu, L. Wang, and J. Warner, “Numerical modeling and performance analysis of a membrane-based air dehumidifier using ionic liquid desiccant,” Applied Thermal Engineering, vol. 175, no. April, p. 115395, 2020. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2020.115395

[116] D. La, Y. J. Dai, Y. Li, R. Z. Wang, and T. S. Ge, “Technical development of rotary desiccant dehumidification and air conditioning: A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 130–147, 2010.

[117] K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, “Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity,” Pure and Applied Chemistry, vol. 57, no. 4, pp. 603–619, 1985.

[118] C. R., Advanced desiccant materials assessment, phase 2, final report, 1988, no. November 1986.

[119] X. Zheng, T. S. Ge, and R. Z. Wang, “Recent progress on desiccant materials for solid desiccant cooling systems,” Energy, vol. 74, no. 1, pp. 280–294, 2014.

[120] M. V. Rane, S. V. Reddy, and R. R. Easow, “Energy efficient liquid desiccant- based dryer,” Applied Thermal Engineering, vol. 25, no. 5-6, pp. 769–781, 2005.

[121] S. Misha, S. Mat, M. H. Ruslan, and K. Sopian, “Review of solid/liquid desiccant in the drying applications and its regeneration methods,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4686–4707, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2012.04.041

[122] E. Blasco-Tamarit, A. Igual-Muñoz, J. García Antón, and D. García-García, “Effect of aqueous LiBr solutions on the corrosion resistance and galvanic cor- rosion of an austenitic stainless steel in its welded and non-welded condition,” Corrosion Science, vol. 48, no. 4, pp. 863–886, 2006.

[123] L. J. Rather, A. Ali, Q. Zhou, S. A. Ganie, K. Gong, Q. M. Rizwanul Haque, and Q. Li, “Instrumental characterization of merino wool fibers dyed with Cinnamomum camphora waste/fallen leaves extract: An efficient waste management alternative,” Journal of Cleaner Production, vol. 273, p. 123021, nov 2020. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.123021 https://linkinghub.elsevier.com/retrieve/pii/S0959652620330663

[124] A. K. Tripathi, S. Murugavel, and R. K. Singh, “Dead Ashoka (Saraca asoca) leaves–derived porous activated carbons and flexible iongel polymer electrolyte for high-energy-density electric double-layer capacitors,” Materials Today Sustainability, vol. 11-12, p. 100062, 2021. [Online]. Available: https://doi.org/10.1016/j.mtsust.2021.100062

[125] P. Negi, A. K. Chhantyal, A. K. Dixit, S. Kumar, and A. Kumar, “Activated carbon derived from mango leaves as an enhanced microwave absorbing material,” Sustainable Materials and Technologies, vol. 27, p. e00244, 2021. [Online]. Available: https://doi.org/10.1016/j.susmat.2020.e00244

[126] X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, B. Bao, and S. Fu, “Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials,” Chemical Engineering Science, vol. 181, pp. 36–45, 2018. [Online]. Available: https://doi.org/10.1016/j.ces.2018.02.004

[127] M. G. Plaza, A. S. González, J. J. Pis, F. Rubiera, and C. Pevida, “Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture,” Applied Energy, vol. 114, no. 2014, pp. 551–562, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.09.058

[128] Y. J. Heo and S. J. Park, “A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers,” Energy, vol. 91, pp. 142–150, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.energy.2015.08.033

[129] M. Kumar, S. Sabbarwal, P. K. Mishra, and S. N. Upadhyay, “Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies,” Bioresource Technology, vol. 279, no. January, pp. 262–270, 2019. [Online]. Available: https://doi.org/10.1016/j.biortech.2019.01.137

[130] P. González-García, “Activated carbon from lignocellulosics precur- sors: A review of the synthesis methods, characterization tech- niques and applications,” Renewable and Sustainable Energy Reviews, vol. 82, no. August 2017, pp. 1393–1414, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2017.04.117

[131] J. M. Rosas, J. Bedia, J. Rodríguez-Mirasol, and T. Cordero, “On the preparation and characterization of chars and activated carbons from orange skin,” Fuel Processing Technology, vol. 91, no. 10, pp. 1345–1354, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.fuproc.2010.05.006

[132] J. Coates, “Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach,” Encyclopedia of Analytical Chemistry, pp. 1–23, 2004.

[133] S. Biniak, G. Szymański, J. Siedlewski, and A. Światkoski, “The characteriza- tion of activated carbons with oxygen and nitrogen surface groups,” Carbon, vol. 35, no. 12, pp. 1799–1810, 1997.

[134] J. Guo and A. C. Lua, “Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4 and KOH activation and their effects on adsorptive capac- ity,” Chemical Engineering Research and Design, vol. 81, no. 5, pp. 585–590, 2003.

[135] T. Horikawa, T. Sekida, J. Hayashi, M. Katoh, and D. D. Do, “A new adsorption-desorption model for water adsorption in porous carbons,” Carbon, vol. 49, no. 2, pp. 416–424, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.carbon.2010.09.038

[136] L. Liu, Y. Zeng, S. Johnathan, H. Xu, D. D. Do, and D. Nicholson, “On the mechanism of water adsorption in carbon micropores – A molecular simulation study,” vol. 357, no. September 2018, pp. 358–366, 2019.

[137] T. Horikawa, Y. Kitakaze, T. Sekida, J. Hayashi, and M. Katoh, “Characteristics and humidity control capacity of activated carbon from bamboo,” Bioresource Technology, vol. 101, no. 11, pp. 3964–3969, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.biortech.2010.01.032

[138] S. Wang, H. Nam, and H. Nam, “Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space,” Journal of Environmental Chemical Engineering, vol. 8, no. 2, p. 103683, 2020. [Online]. Available: https://doi.org/10.1016/j.jece.2020.103683

[139] G. E. J. Poinern, G. Senanayake, N. Shah, X. N. Thi-Le, G. M. Parkinson, and D. Fawcett, “Adsorption of the aurocyanide, Au (CN)2- complex on granular activated carbons derived from macadamia nut shells - A preliminary study,” Minerals Engineering, vol. 24, no. 15, pp. 1694–1702, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.mineng.2011.09.011

[140] E. Altintig and S. Kirkil, “Preparation and properties of Ag-coated activated carbon nanocomposites produced from wild chestnut shell by ZnCl2 activa- tion,” Journal of the Taiwan Institute of Chemical Engineers, vol. 63, pp. 180–188, 2016.

[141] F. Agency, “State of Japan ’ s Forests and Forest Management,” 2009. [Online]. Available: http://www.rinya.maff.go.jp/j/kaigai/pdf/countryreport-1.pdf

[142] M. Polimac, D. K. Komlenić, and J. Lukinac, “Possibilities of using acorn flour in products based on flour,” Proceedings of the 8th International Congress FLOUR-BREAD 2015 - 10th Croatian Congress of Cereal Technologists, pp. 33–48, 2015.

[143] S. Overstreet, S. Choi, C.-R. Park, D. Lee, and T. Gradziel, “Acorn Production and Utilization in the Republic of Korea,” California Oak Symposium: Man- aging Oak Woodlands in a Dynamic World, p. 265, 2014. [Online]. Available: https://www.fs.fed.us/psw/publications/documents/psw_gtr251/psw_gtr251_265.pdf

[144] J. C. Liu and P. A. Monson, “Does water condense in carbon pores?” Lang- muir, vol. 21, no. 22, pp. 10 219–10 225, 2005.

[145] A. Malika and A. Mohammed, “Kinetic and energy study of thermal degrada- tion of biomass materials under oxidative atmosphere using TGA , DTA and DSC,” Science And Technology, vol. 1, no. 5, pp. 74–78, 2014.

[146] W. A. Wan Mahari, C. T. Chong, W. H. Lam, T. N. S. T. Anuar, N. L. Ma, M. D. Ibrahim, and S. S. Lam, “Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment,” Energy Conversion and Management, vol. 171, pp. 1292–1301, 2018.

[147] H. S. Choi, Y. S. Choi, and H. C. Park, “Fast pyrolysis char- acteristics of lignocellulosic biomass with varying reaction conditions,” Renewable Energy, vol. 42, pp. 131–135, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2011.08.049

[148] M. S. Safdari, E. Amini, D. R. Weise, and T. H. Fletcher, “Heating rate and temperature effects on pyrolysis products from live wildland fuels,” Fuel, vol. 242, no. January, pp. 295–304, 2019. [Online]. Available: https://doi.org/10.1016/j.fuel.2019.01.040

[149] A. Striolo, A. A. Chialvo, P. T. Cummings, and K. E. Gubbins, “Water ad- sorption in carbon-slit nanopores,” Langmuir, vol. 19, no. 20, pp. 8583–8591, 2003.

[150] M. Nakamura, T. Ohba, P. Branton, H. Kanoh, and K. Kaneko, “Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons,” Car- bon, vol. 48, no. 1, pp. 305–308, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.carbon.2009.09.008

[151] R. Lin, A. Ladshaw, Y. Nan, J. Liu, S. Yiacoumi, C. Tsouris, D. W. Depaoli, and L. L. Tavlarides, “Isotherms for Water Adsorption on Molecular Sieve 3A : Influence of Cation Composition,” pp. 1–21, 1883.

[152] M. Sultan, I. I. El-Sharkawy, T. Miyazaki, B. B. Saha, S. Koyama, T. Maruyama, S. Maeda, and T. Nakamura, “Water vapor sorption kinetics of polymer based sorbents: Theory and experiments,” Applied Thermal Engineering, vol. 106, pp. 192–202, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.applthermaleng.2016.05.192

[153] K. Okada, M. Nakanome, Y. Kameshima, T. Isobe, and A. Nakajima, “Water vapor adsorption of CaCl2-impregnated activated carbon,” Materials Research Bulletin, vol. 45, no. 11, pp. 1549–1553, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.materresbull.2010.07.027

[154] Q. Yu, H. H. Zhao, S. Sun, H. H. Zhao, G. Li, M. Li, and Y. Wang, “Characterization of MgCl 2 / AC composite adsorbent and its water vapor adsorption for solar drying system application,” Renewable Energy, vol. 138, pp. 1087–1095, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2019.02.024

[155] W. Mohd and A. Wan, “Textural characteristics , surface chemistry and oxi- dation of activated carbon,” Journal of Natural Gas Chemistry, vol. 19, no. 3, pp. 267–279, 2010. [Online]. Available: http://dx.doi.org/10.1016/S1003-9953(09)60066-9

[156] R. H. Mohammed, O. Mesalhy, M. L. Elsayed, M. Su, and L. C. Chow, “Re- visiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications,” International Journal of Refrigeration, vol. 86, pp. 40–47, 2018. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2017.10.038

[157] H. Wei, B. Teo, A. Chakraborty, and W. Fan, “Improved ad- sorption characteristics data for AQSOA types zeolites and water systems under static and dynamic conditions,” Microporous and Meso- porous Materials, vol. 242, pp. 109–117, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.micromeso.2017.01.015

[158] R. H. Mohammed, A. Rezk, A. Askalany, E. S. Ali, A. Zohir, M. Sultan, M. Ghazy, M. A. Abdelkareem, and A. Olabi, “Metal-organic frameworks in cooling and water desalination: Synthesis and application,” Renewable and Sustainable Energy Reviews, vol. 149, no. June, p. 111362, 2021. [Online]. Available: https://doi.org/10.1016/j.rser.2021.111362

[159] I. O. P. C. Series and M. Science, “Facile Synthesis of Carboxylated Activated Carbon Using Green Approach for Water Treatment Facile Synthesis of Car- boxylated Activated Carbon Using Green Approach for Water Treatment,” 2019.

[160] H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, “Effect of ozone treatment on surface properties of activated carbon,” Langmuir, vol. 18, no. 6, pp. 2111–2116, 2002.

[161] P. M. Álvarez, J. F. García-Araya, F. J. Beltrán, F. J. Masa, and F. Medina, “Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 503–512, 2005.

[162] J. L. Figueiredo, M. F. Pereira, M. M. Freitas, and J. J. Órfão, “Modification of the surface chemistry of activated carbons,” Carbon, vol. 37, no. 9, pp. 1379–1389, 1999.

[163] T. Ohba and K. Kaneko, “Kinetically forbidden transformations of water molecular assemblies in hydrophobic micropores,” Langmuir, vol. 27, no. 12, pp. 7609–7613, 2011.

[164] E. A. Müller, L. F. Rull, L. F. Vega, and K. E. Gubbins, “Adsorption of water on activated carbons: A molecular simulation study,” Journal of Physical Chemistry, vol. 100, no. 4, pp. 1189–1196, 1996.

[165] A. Jahanban-Esfahlan, A. Ostadrahimi, M. Tabibiazar, and R. Amarowicz, “A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk,” International Journal of Molecular Sciences, vol. 20, no. 16, 2019.

[166] G. M. Brito, D. F. Cipriano, M. Â. Schettino, A. G. Cunha, E. R. C. Coelho, and J. C. Checon Freitas, “One-step methodology for preparing physically activated biocarbons from agricultural biomass waste,” Journal of Environmental Chemical Engineering, vol. 7, no. 3, p. 103113, 2019. [Online]. Available: https://doi.org/10.1016/j.jece.2019.103113

[167] Chairunnisa, N. Takata, K. Thu, T. Miyazaki, K. Nakabayashi, and J. Miyawaki, “Camphor leaf-derived activated carbon prepared by conven- tional physical activation and its water adsorption profile,” Carbon Letters, 2020.

[168] C. Nunes and M. Guerreiro, “Preparation of activated carbon by chemical activation with ZnCl .” Quimica Nova, vol. 34, no. 9, pp. 472–476, 2011.

[169] A. Wongkoblap and D. D. Do, “Adsorption of water in finite length carbon slit pore: Comparison between computer simulation and experiment,” Journal of Physical Chemistry B, vol. 111, no. 50, pp. 13 949–13 956, 2007.

[170] T. Ohba, H. Kanoh, and K. Kaneko, “Affinity Transformation from Hy- drophilicity to Hydrophobicity of Water Molecules on the Basis of Adsorption of Water in Graphitic Nanopores,” Journal of the American Chemical Society, vol. 126, no. 5, pp. 1560–1562, 2004.

[171] T. Horikawa, T. Muguruma, D. D. Do, K. I. Sotowa, and J. R. Alcántara- Avila, “Scanning curves of water adsorption on graphitized thermal carbon black and ordered mesoporous carbon,” Carbon, vol. 95, pp. 137–143, 2015.

[172] Chairunnisa, F. Mikšík, T. Miyazaki, K. Thu, J. Miyawaki, K. Nakabayashi, A. T. Wijayanta, and F. Rahmawati, “Enhancing water adsorption capacity of acorn nutshell based activated carbon for adsorption thermal energy storage application,” Energy Reports, vol. 6, pp. 255–263, dec 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2352484720314633

[173] T. Ohba, H. Kanoh, and K. Kaneko, “Structures and stability of water nan- oclusters in hydrophobic nanospaces,” Nano Letters, vol. 5, no. 2, pp. 227–230, 2005.

[174] T. X. Nguyen and S. K. Bhatia, “Some anomalies in the self-diffusion of water in disordered carbons,” Journal of Physical Chemistry C, vol. 116, no. 5, pp. 3667–3676, 2012.

[175] A. B. Setyowati, “Mitigating inequality with emissions? Exploring energy justice and financing transitions to low carbon energy in Indonesia,” Energy Research and Social Science, vol. 71, p. 101817, 2021. [Online]. Available: https://doi.org/10.1016/j.erss.2020.101817

[176] T. H. Karyono, “Predicting comfort temperature in Indonesia, an initial step to reduce cooling energy consumption,” Buildings, vol. 5, no. 3, pp. 802–813, 2015.

[177] R. H. Mohammed, O. Mesalhy, M. L. Elsayed, S. Hou, M. Su, and L. C. Chow, “Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers,” Applied Ther- mal Engineering, vol. 137, no. April, pp. 368–376, jun 2018. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2018.03.088 https://linkinghub.elsevier.com/retrieve/pii/S1359431117367935

[178] H. Naono, M. Hakuman, M. Shimoda, K. Nakai, and S. Kondo, “Separation of water and ethanol by the adsorption technique: Selective desorption of water from micropores of active carbon,” Journal of Colloid and Interface Science, vol. 182, no. 1, pp. 230–238, 1996.

[179] X. Wang, H. Cheng, G. Ye, J. Fan, F. Yao, Y. Wang, Y. Jiao, W. Zhu, H. Huang, and D. Ye, “Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review,” Chemosphere, vol. 287, no. P2, p. 131995, 2021. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2021.131995

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る