リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anti-nucleolin aptamer, iSN04, inhibits the inflammatory responses in C2C12 myoblasts by modulating the β-catenin/NF-κB signaling pathway」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anti-nucleolin aptamer, iSN04, inhibits the inflammatory responses in C2C12 myoblasts by modulating the β-catenin/NF-κB signaling pathway

Yamamoto, Machi Miyoshi, Mana Morioka, Kamino Mitani, Takakazu Takaya, Tomohide 信州大学 DOI:10.1016/j.bbrc.2023.04.098

2023.05.08

概要

A myogenetic oligodeoxynucleotide, iSN04, is the 18-base single-stranded DNA that acts as an anti-nucleolin aptamer. iSN04 has been reported to restore myogenic differentiation by suppressing inflammatory responses in myoblasts isolated from patients with diabetes or healthy myoblasts exposed to cancer-releasing factors. Thus, iSN04 is expected to be a nucleic acid drug for the muscle wasting associated with chronic diseases. The present study investigated the anti-inflammatory mechanism of iSN04 in the murine myoblast cell line C2C12. Tumor necrosis factor-α (TNF-α) or Toll-like receptor (TLR) ligands (Pam3CSK4 and FSL-1) induced nuclear translocation and transcriptional activity of nuclear factor-κB (NF-κB), resulting in upregulated expression of TNF-α and interleukin-6. Pre-treatment with iSN04 significantly suppressed these inflammatory responses by inhibiting the nuclear accumulation of β-catenin induced by TNF-α or TLR ligands. These results demonstrate that antagonizing nucleolin with iSN04 downregulates the inflammatory effect mediated by the β-catenin/NF-κB signaling pathway in C2C12 cells. In addition, the anti-inflammatory effects of iSN04 were also observed in the rat smooth muscle cell line A10 and the murine adipocyte-like fibroblast cell line 3T3-L1, suggesting that iSN04 may be useful in preventing inflammation induced by metabolic disorders.

この論文で使われている画像

参考文献

[1]

I. Janssen, S.B. Heymsfield, Z.M. Wang, R. Ross, Skeletal muscle mass

and distribution in 468 men and women aged 18-88 yr, J. Appl. Physiol.

89 (2000) 81-88. https://doi.org/10.1152/jappl.2000.89.1.81.

[2]

L.A. Rowland, N.C. Bal, M. Periasamy, The role of skeletal-muscle-based

thermogenic mechanisms in vertebrate endothermy, Biol. Rev. Camb.

Philos. Soc. 90 (2015) 1279-1297. https://doi.org/10.1111/brv.12157.

[3]

J. Jensen, P.I. Rustad, A.J. Kolnes, Y.C. Lai, The role of skeletal muscle

glycogen breakdown for regulation of insulin sensitivity by exercise,

Front. Physiol. 2 (2011) 112. https://doi.org/10.3389/fphys.2011.00112.

[4]

M. Periasamy, J.L. Herrera, F.C.G. Reis, Skeletal muscle thermogenesis

and its role in whole body energy metabolism, Diabetes Metab. J. 41

(2017) 327-336. https://doi.org/10.4093/dmj.2017.41.5.327.

[5]

J.M. Argiles, S. Busquets, B. Stemmler, F.J. Lopez-Soriano, Cancer

cachexia: understanding the molecular basis, Nat. Rev. Cancer 14 (2014)

754-762. https://doi.org/10.1038/nrc3829.

[6]

M. Muscaritoli, M. Bossola, Z. Aversa, R. Bellantone, F. Rossi Faneli,

Prevention and treatment of cancer cachexia: new insights into an old

problem.

Eur.

J.

Cancer

42

(2006)

31-41.

https://doi.org/10.1016/j.ejca.2005.07.026.

[7]

D. Sala, Z. Zorzano, Differential control of muscle mass in type 1 and

type 2 diabetes mellitus, Cell. Mol. Life Sci. 72 (2015) 3803-3817.

https://doi.org/10.1007/s00018-015-1954-7.

18

[8]

H. Miyake, I. Kanazawa, K.I. Tanaka, T. Sugimoto, Low skeletal muscle

mass is associated with the risk of all-cause mortality in patients with

type 2 diabetes mellitus, Ther. Adv. Endocrinol. Metab. 10 (2019)

2042018819842971. https://doi.org/10.1177/2042018819842971.

[9]

C. Jin, R.A. Flavell, Innate sensors of pathogen and stress: linking

inflammation to obesity, J. Allergy Clin. Immunol. 132 (2013) 387-394.

https://doi.org/10.1016/j.jaci.2013.06.022.

[10]

J. Malla, A. Zahra, S. Venugopal, T.Y. Selvamani, S.I. Shoukrie, R.

Selvaraj, R.K. Dhanoa, R.K. Hamouda, J. Mostafa, What role do

inflammatory cytokines play in cancer cachexia?, Cureus 14 (2022)

e26798. https://doi.org/10.7759/cureus.26798.

[11]

J.M.

Webster,

L.J.A.P.

Kempen,

R.S.

Hardy,

R.C.J.

Langen,

Inflammation and skeletal muscle wasting during cachexia, Front.

Physiol. 11 (2020) 597675. https://doi.org/10.3389/fphys.2020.597675.

[12]

L.

Schaefer,

Complexity

of

danger:

the

diverse

nature

of

damage-associated molecular patterns, J. Biol. Chem. 289 (2014)

35237-35245. https://doi.org/10.1074/jbc.R114.619304.

[13]

A.E. Qualls, W.M. Southern, J.A. Call, Mitochondria-cytokine crosstalk

following skeletal muscle injury and disuse: a mini-review, Am. J.

Physiol.

Cell

Phyisol.

320

(2021)

C681-C688.

https://doi.org/10.1152/ajpcell.00462.2020.

[14]

S. Lokireddy, I.W. Wijesoma, S. Bonala, M. Wei, S.K. Sze, C. McFarlane,

R. Kambadur, M. Sharma, Myostatin is a novel tumoral factor that

19

induces

cancer

cachexia,

Biochem.

J.

446

(2012)

23-36.

https://doi.org/10.1042/BJ20112024.

[15]

F. Marchildon, E. Lamarche, N. Lala-Tabbert, C. St-Louis, N.

Wiper-Bergeron, Expression of CCAAT/enhancer binding protein beta in

muscle satellite cells inhibits myogenesis in cancer cachexia, PLoS One

10 (2015) e0145583. https://doi.org/10.1371/journal.pone.0145583.

[16]

G. Zhang, Z. Liu, H. Ding, Y. Zhou, H.A. Doan, K.W.T. Sin, Z.J. Zhu, R.

Flores, Y. Wen, X. Gong, Q. Liu, Y.P. Li, Tumor induces muscle wasting in

mice through releasing extracellular Hsp70 and Hsp90, Nat. Commun. 8

(2017) 589. https://doi.org/10.1038/s41467-017-00726-x.

[17]

C. Miao, W. Zhang, L. Feng, X. Gu, Q. Shen, S. Lu, M. Fan, Y. Li, X. Guo,

Y. Ma, X. Liu, H. Wang, X. Zhang, Cancer-derived exosome miRNAs

induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon

cancer

cachexia,

Mol.

Ther.

Nucleic Acids

24

(2021) 923-938.

https://doi.org/10.1016/j.omtn.2021.04.015.

[18]

T.I. Henriksen, P.K. Davidsen, M. Pedersen, H.S. Schultz, N.S. Hansen,

T.J. Larsen, A. Vaag, B.K. Pedersen, S. Nielsen, C. Scheele,

Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell

differentiation of humans with type 2 diabetes, Mol. Metab. 6 (2017)

770-779. https://doi.org/10.1016/j.molmet.2017.04.006.

[19]

T.I. Henriksen, L.V. Wigge, J. Nielsen, B.K. Pedersen, M. Sandri, C.

Scheele, Dysregulated autophagy in muscle precursor cells from humans

with

type

diabetes,

Sci.

Rep.

https://doi.org/10.1038/s41598-019-44535-2.

(2019)

8169.

20

[20]

S. Shinji, K. Umezawa, Y. Nihashi, S. Nakamura, T. Shimosato, T.

Takaya, Identification of the myogenetic oligodeoxynucleotides (myoDNs)

that promote differentiation of skeletal muscle myoblasts by targeting

nucleolin,

Front.

Cell

Dev.

Biol.

(2021)

606706.

https://doi.org/10.3389/fcell.2020.616706.

[21]

Y. Nihashi, S. Shinji, K. Umezawa, T. Ono, H. Kagami, T. Takaya,

Myogenetic oligodeoxynucleotide complexed with berberine promotes

differentiation of chicken myoblasts, Anim. Sci. J. 92 (2021) e13597.

https://doi.org/10.1002/ASJ.13597.

[22]

N. Nohira, S. Shinji, S. Nakamura, Y. Nihashi, T. Shimosato, T. Takaya,

Myogenetic oligodeoxynucleotides as anti-nucleolin aptamers inhibit the

growth of embryonal rhabdomyosarcoma cells, Biomedicines 10 (2022)

2691. https://doi.org/10.3390/biomedicines10112691.

[23]

S. Nakamura, S. Yonekura, T. Shimosato, T. Takaya, Myogenetic

oligodeoxynucleotide (myoDN) recovers the differentiation of skeletal

muscle myoblasts deteriorated by diabetes mellitus, Front. Physiol. 12

(2021) 679152. https://doi.org/10.3389/fphys.2021.679152.

[24]

Y. Nihashi, M. Yamamoto, T. Shimosato, T. Takaya, Myogenetic

oligodeoxynucleotide restores differentiation and reverses inflammation

of myoblasts aggravated by cancer-conditioned medium, Muscles 1 (2022)

111-120. https://doi.org/10.3390/muscles1020012.

[25]

E.K. Enwere, E.C. Lacasse, N.J. Adam, R.G. Korneluk, Role of the

TWEAK-Fn14-cIAP1-NF-κB

signaling

axis

in

the

regulation

of

21

myogenesis and muscle homeostasis, Front. Immunol. 5 (2014) 34.

https://doi.org/10.3389/fimmu.2014.00034.

[26]

L.H. Mariero, M.K. Torp, C.M. Heiestad, A. Baysa, Y. Li, G. Valen, J.

Vaage, K.O. Stenslokken, Inhibiting nucleolin reduces inflammation

induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and

reoxygenation,

Br.

J.

Pharmacol.

176

(2019)

4360-4372.

https://doi.org/10.1111/bph.14830.

[27]

Y. Nihashi, M. Miyoshi, K. Umezawa, T. Shimosato, T. Takaya,

Identification of a novel osteogenetic oligodeoxynucleotide (osteoDN) that

promotes osteoblast differentiation in a TLR9-independent manner,

Nanomaterials 12 (2022) 1680. https://doi.org/10.3390/nano12101680.

[28]

L. Fang, P.F. Zhang, K.K. Wang, Z.L. Xiao, M. Yang, Z.X. Yu, Nucleolin

promotes Ang II‑induced phenotypic transformation of vascular smooth

muscle cells via interaction with tropoelastin mRNA, Int. J. Mol. Med. 43

(2019) 1597-1610. https://doi.org/10.3892/ijmm.2019.4090.

[29]

L. Fang, K.K. Wang, P.F. Zhang, T. Li, Z.L. Xiao, M. Yang, Z.X. Yu,

Nucleolin promotes Ang II-induced phenotypic transformation of

vascular smooth muscle cells by regulating EGF and PDGF-BB, J. Cell.

Mol. Metab. 24 (2020) 1917-1933. https://doi.org/10.1111/jcmm.14888.

[30]

T. Mitani, T. Takaya, N. Harada, S. Katayama, R. Yamaji, S. Nakamura,

H. Ashida, Theophylline suppresses interleukin-6 expression by

inhibiting glucocorticoid receptor signaling in pre-adipocytes, Arch.

Biochem.

Biophys.

646

https://doi.org/10.1016/j.abb.2018.04.001.

(2018)

98-106.

22

[31]

K.J. Veazey, M.C. Golding, Selection of stable reference genes for

quantitative

rt-PCR

extra-embryonic

stem

comparisons

cells,

of

PLoS

mouse

One

embryonic

(2011)

and

e27592.

https://doi.org/10.1371/journal.pone.0027592.

[32]

K.E. Beazley, S. Deasey, F. Lima, M.V. Nurminskaya, Transglutaminase

2-mediated activation of beta-catenin signaling has a critical role in

warfarin-induced vascular calcification, Arterioscler. Thromb. Vasc. Biol.

32 (2012) 123-130. https://doi.org/10.1161/ATVBAHA.111.237834.

[33]

M. Sugimoto, H. Arai, Y. Tamura, T. Murayama, P. Khaengkhan, T.

Nishio, K. Ono, H. Ariyasu, T. Akamizu, Y. Ueda, T. Kita, S. Harada, K.

Kamei, M. Yokode, Mulberry leaf ameliorates the expression profile of

adipocytokines by inhibiting oxidative stress in white adipose tissue in

db/db

mice,

Atherosclerosis

204

(2009)

388-394.

https://doi.org/10.1016/j.atherosclerosis.2008.10.021.

[34]

U.A. Kohler, F. Bohm, F. Rolfs, M. Egger, T. Hornemann, M. Pasparakis,

A. Weber, S. Werner, NF-κB/RelA and Nrf2 cooperate to maintain

hepatocyte integrity and to prevent development of hepatocellular

adenoma,

J.

Hepatol.

64

(2016)

94-102.

https://doi.org/10.1016/j.jhep.2015.08.033.

[35]

R. Takanabe, K. Ono, Y. Abe, T. Takaya, T. Horie, H. Wada, T. Kita, N.

Satoh,

A. Shimatsu,

K.

Hasegawa, Up-regulated expression of

microRNA-143 in association with obesity in adipose tissue of mice fed

high-fat diet, Biochem. Biophys. Res. Commun. 376 (2008) 728-732.

https://doi.org/10.1016/j.bbrc.2008.09.050.

23

[36]

A. Soultanova, Z. Mikulski, U. Pfeil, V. Grau, W. Kummer, Calcitonin

peptide family members are differentially regulated by LPS and inhibit

functions of rat alveolar NR8383 macrophages, PLoS One 11 (2016)

e0163483. https://doi.org/10.1371/journal.pone.0163483.

[37]

X. Shan, Y. Zhang, H. Chen, L. Dong, B. Wu, T. Xu, J. Hu, Z. Liu, W.

Wang, L. Wu, Z. Feng, G. Liang, Inhibition of epidermal growth factor

receptor attenuates LPS-induced inflammation and acute lung injury in

rats,

Oncotarget

(2017)

26648-26661.

https://doi.org/10.18632/oncotarget.15790.

[38]

A. Sarrion-Perdigones, Y. Gonzalez, K.J.T. Venken, Rapid and efficient

synthetic assembly of multiplex luciferase reporter plasmids for the

simultaneous monitoring of up to six cellular signaling pathways, Curr.

Protoc. Mol. Biol. 131 (2020) e121. https://doi.org/10.1002/cpmb.121.

[39]

E. Tanaka, T. Mitani, M. Nakashima, E. Yonemoto, H. Fujii, H. Ashida,

Theobromine enhances the conversion of white adipocytes into beige

adipocytes in a PPARγ activation-dependent manner, J. Nutr. Biochem.

100 (2022) 108898. https://doi.org/10.1016/j.jnutbio.2021.108898.

[40]

Y. Nihashi, T. Ono, H. Kagami, T. Takaya, Toll-like receptor

ligand-dependent inflammatory responses in chick skeletal muscle

myoblasts,

Dev.

Comp.

Immunol.

91

(2019)

115-122.

https://doi.org/10.1016/j.dci.2018.10.013.

[41]

T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation,

Signal

Transduct.

Target.

Ther.

https://doi.org/10.1038/sigtrans.2017.23.

(2017)

e17023.

24

[42]

C. Zuo, X. Zhao, Y. Shi, W. Wu, N. Zhang, J. Xu, C. Wang, G. Hu, X.

Zhang, TNF-α inhibits SATB2 expression and osteoblast differentiation

through NF-κB and MAPK pathways, Oncotarget 9 (2018) 4833-4850.

https://doi.org/10.18632/oncotarget.23373.

[43]

B. Ma, M.O. Hottiger, Crosstalk between Wnt/β-catenin and NF-κB

signaling pathway during inflammation, Front. Immunol. 7 (2016) 378.

https://doi.org/10.3389/fimmu.2016.00378.

[44]

S.D.

Gopinath,

S.

Narumiya,

J.

Dhawan,

The

RhoA effector

mDiaphanous regulates MyoD expression and cell cycle progression via

SRF-dependent and SRF-independent pathways, J. Cell Sci. 120 (2007)

3086-3098. https://doi.org/10.1242/jcs.006619.

[45]

J. Li, Y. Wang, Y. Wang, Y. Yan, H. Tong, S. Li, Fibronectin type III

domain containing four promotes differentiation of C2C12 through the

Wnt/β-catenin signaling pathway, FASEB J. 34 (2020) 7759-7772.

https://doi.org/10.1096/fj.201902860RRR.

[46]

W. Jia, Z. Yao, J. Zhao, Q. Guan, L. Gao, New perspectives of

physiological and pathological functions of nucleolin (NCL), Life Sci. 186

(2017) 1-10. https://doi.org/10.1016/j.lfs.2017.07.025.

[47]

P. Csermely, T. Schnaider, B. Cheatham, M.O.J. Olson, C.R. Kahn,

Insulin induces the phosphorylation of nucleolin, J. Biol. Chem. 268

(1993) 9747-9752. https://doi.org/10.1016/s0021-9258(18)98411-5.

[48]

M. Terrasi, E. Fiorio, A. Mercanti, M. Koda, C.A. Moncada, S. Sulkowski,

S. Merali, A. Russo, E. Surmacz, Functional analysis of the -2548G/A

25

leptin gene polymorphism in breast cancer cells, Int. J. Cancer 125

(2009) 1038-1044. https://doi.org/10.1002/ijc.24372.

[49]

J.A. McCubrey, L.S. Steelman, F.E. Bertrand, N.M. Davis, S.L. Abrams,

G. Montalto, A.B. D’Assoro, M. Libra, F. Nicoletti, R. Maestro, J. Basecke,

L. Cocco, M. Cervello, A.M. Martelli, Multifaceted roles of GSK-3 and

Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for

therapeutic

intervention,

Leukemia

28

(2014)

15-33.

https://doi.org/10.1038/leu.2013.184.

[50]

S. Reister, C. Mahotka, N. van den Hofel, E. Crinstein, Nucleolin

promotes Wnt signaling in human hematopoietic stem/progenitor cells,

Leukemia

33

(2019)

1052-1054.

https://doi.org/10.1038/s41375-019-0401-4.

[51]

L. Fang, K.K. Wang, Q. Huang, F. Cheng, F. Huang, W.W. Liu, Nucleolin

mediates LPS-induced expression of inflammatory mediators and

activation of signaling pathways, Curr. Med. Sci. 40 (2020) 646-653.

https://doi.org/10.1007/s11596-020-2229-6.

[52]

M. Yamamoto, M. Miyoshi, K. Morioka, T. Mitani, T. Takaya, An

anti-nucleolin aptamer, iSN04, inhibits inflammatory responses in

myoblasts by modulating β-catenin/NF-κB signaling pathway, bioRxiv

(2023) 535227. https://doi.org/10.1101/2023.04.01.535227.

26

Figure legends

Fig. 1. iSN04 inhibits NF-κB-dependent inflammatory gene expression in

myoblast cell line C2C12. (A) qPCR results of TNF-α (Tnf), IL-6 (Il6), and

NF-κB p65 subunit (Rela) expression in the C2C12 cells pre-treated with 10

μM iSN04 for 3 h and then treated with 50 ng/ml TNF-α, 100 ng/ml

Pam3CSK4, or 100 ng/ml FSL-1 for 2 h. * p < 0.05, ** p < 0.01 vs control; † p <

0.05,

††

p < 0.05 vs ligand. n = 3-4. (B) Relative NF-κB-Luc activities in the

C2C12 cells pre-treated with 10 μM iSN04 for 3 h and then treated with 50

ng/ml TNF-α or 100 ng/ml Pam3CSK4 for 40 h. ** p < 0.01 vs control;

p<

0.05, †† p < 0.05 vs ligand. n = 3.

Fig. 2. iSN04 inhibits nuclear translocation of NF-κB. (A and B)

Representative images of NF-κB staining of the C2C12 cells pre-treated with

10 μM iSN04 for 3 h and then treated with 50 ng/ml TNF-α (A) or 100 ng/ml

Pam3CSK4 (B) for 30 min. Scale bar, 50 μm.

Fig. 3. iSN04 inhibits GSK-3β phosphorylation and β-catenin activation. (A)

Representative images of β-catenin staining of the C2C12 cells pre-treated

with 10 μM iSN04 for 3 h and then treated with 50 ng/ml TNF-α for 1 h.

Scale bar, 50 μm. (B) Representative images and quantification of Western

blotting of β-catenin and GAPDH from C2C12 cells treated as in panel A. **

p < 0.01 vs control, † p < 0.05 vs TNF-α. n = 3.

27

Fig. 4. iSN04 inhibits NF-κB-dependent inflammatory gene expression in

smooth muscle cell line A10 and adipocyte-like cell line 3T3-L1. (A) qPCR

results of IL-6 (Il6), IL-8 (Cxcl8), and MCP-1 (Ccl2) expression in A10 cells

pre-treated with 10 μM iSN04 for 3 h and subsequently treated with 50

ng/ml TNF-α for 4 h. * p < 0.05, ** p < 0.01 vs control; † p < 0.05, †† p < 0.05 vs

TNF-α. n = 3. (B) Relative NF-κB-Luc activities in the A10 cells pre-treated

with 10 μM iSN04 for 3 h and subsequently treated with 3 ng/ml TNF-α for

40 h. ** p < 0.01 vs control,

p < 0.05 vs TNF-α. n = 3. (C) qPCR results of

TNF-α (Tnf) and IL-6 (Il6) expression in the 3T3-L1 cells pre-treated with 30

μM iSN04 for 3 h and subsequently treated with 5 ng/ml TNF-α or 10 ng/ml

Pam3CSK4 for 2 h. * p < 0.05, ** p < 0.01 vs control; † p < 0.05,

ligand. n = 3-4.

††

p < 0.05 vs

Figure 1

1.5

††

1.0

0.5

0.0

iSN04

iSN04

iSN04

TNF

TNF

Pam

Pam

FSL

FSL

**

**

30

††

Il6 / Ywhaz

Il6 / Ywhaz

20

††

10

50

40

30

20

10

**

††

iSN04

iSN04

iSN04

TNF

TNF

Pam

Pam

FSL

FSL

iSN04

FSL

FSL

2.0

Rela / Ywhaz

Rela / Ywhaz

††

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

iSN04

TNF

TNF

iSN04

Pam Pam

Pam3CSK4 (100 ng/ml)

NF-κB-Luc

**

25

20

15

10

2.0

1.5

1.0

0.5

0.0

TNF-α (50 ng/ml)

NF-κB-Luc

**

**

10

Tnf / Ywhaz

FSL-1 (100 ng/ml)

Il6 / Ywhaz

Tnf / Ywhaz

2.0

Pam3CSK4 (100 ng/ml)

Tnf / Ywhaz

TNF-α (50 ng/ml)

Rela / Ywhaz

50

40

30

20

10

**

††

iSN04

iSN04

TNF

TNF

Pam

Pam

Figure 2

Control

TNF-α

iSN04 + TNF-α

Control

Pam3CSK4

iSN04 + Pam3CSK4

DAPI

NF-κB

DAPI

NF-κB

Figure 3

TNF-α

iSN04 + TNF-α

DAPI

β-catenin

Control

β-catenin / GAPDH

β-catenin

iSN04

TNF-α

GAPDH

**

††

iSN04

TNF

TNF

Figure 4

TNF-α (50 ng/ml)

1.0

0.5

0.0

10

**

30

††

20

10

iSN04

iSN04

iSN04

TNF

TNF

TNF

TNF

TNF

TNF

TNF-α (5 ng/ml)

**

Tnf / Ywhaz

**

Pam3CSK4 (10 ng/ml)

iSN04

iSN04

iSN04

TNF

TNF

TNF

TNF

Pam

Pam

**

††

Il6 / Ywhaz

NF-κB-Luc

††

TNF-α (3 ng/ml)

40

**

15

Tnf / Ywhaz

20

Ccl2 / Rpl19

Cxcl8 / Rpl19

1.5

Il6 / Ywhaz

Il6 / Rpl19

2.0

**

50

40

30

20

10

††

iSN04

iSN04

TNF

TNF

Pam

Pam

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る