リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a method for large scale production of pancreatic islet progenitors derived from human iPS cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a method for large scale production of pancreatic islet progenitors derived from human iPS cells

田中, 杏奈 東京大学 DOI:10.15083/0002006191

2023.03.24

概要

1

論文審査の結果の要旨
氏名 田中 杏奈

本論文は5つの章からなる。第 1 章の Introduction、第 2 章の Materials and Methods に続き、第
3 章と第 4 章では研究成果とその考察、そして第 5 章で結論が記されている。
申請者の研究室では、糖尿病の新たな治療法開発を目指してヒト iPS 細胞から膵島を作製して
いる。本論文では、ヒト iPS 細胞から分化誘導した膵内分泌前駆細胞の増幅法と、さらに増幅した
細胞を機能的な膵島へと分化誘導する方法が示された。
これまでに、胎児期の膵発生を模倣した多段階分化誘導法を用いることで、ヒト iPS 細胞から膵
島を誘導する方法は多数報告されている。しかしながら、糖尿病患者への移植に必要な大量の膵
島細胞の調製にかかる多額な費用や品質の安定性が課題となっている。そこで本論文では、膵島
の前分化段階である膵内分泌前駆細胞を増幅し、機能的な膵島を大量に作製する方法を開発す
ることで、この課題の解決に取り組んだ。
膵内分泌前駆細胞は、内分泌前駆細胞のマスター遺伝子 NGN3 の発現が必須である。一方、
NGN3 の発現は細胞増殖を抑制することが知られており、本論文の内分泌前駆細胞においても増
幅は困難であった。そこで、この細胞にレンチウイルスベクターを用いて複数種の細胞増殖関連遺
伝子を導入し、その有効性を検討した。その結果、SV40LT を導入することによって、安定的かつ
長期の細胞増殖が可能であった。しかしながら、この増殖シグナルによって、NGN3 をはじめとした
内分泌前駆細胞マーカー遺伝子の発現は顕著に減少した。そこで、細胞増殖後に Cre/loxP シス
テムを用いて SV40LT を除去したところ、細胞増殖は停止し、10 日間の培養後には内分泌前駆細
胞マーカー遺伝子の発現が回復することが示された。最後に、この NGN3 の発現が回復した増幅
細胞から膵島へ分化誘導した結果、グルコース濃度応答性インスリン分泌能を保持する機能的な
膵島へと分化することが示された。一方、SV40LT 除去直後に膵島への分化誘導を行った場合に
は、インスリン分泌量が顕著に低かったことから、NGN3 発現の回復が機能的な膵島への分化条
件であることが明らかとなった。
このように申請者は、膵内分泌前駆細胞の増幅によって膵島の大量培養を可能とする新規手法
の開発により、iPS 細胞由来膵島の 1 型糖尿病の臨床応用に向けた基盤を構築した。また、本研
究における細胞生物学的解析は膵発生の理解にも大いに寄与する。
なお本論文は、渡邊亜美氏、中野泰博氏、松本征仁氏、岡﨑康司氏および宮島篤氏との共同
研究であるが、論文提出者が主体となって実験計画を立案して実施し、結果の分析を行ったもの
で、論文提出者の寄与が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

Arda, H.E., Li, L., Tsai, J., et al. (2016). Age-dependent pancreatic gene regulation

reveals mechanisms governing human β cell function. Cell Metab. 23, 909–920.

Ashcroft, F.M., & Rorsman, P. (2012). Diabetes mellitus and the β cell: The last ten years.

Cell 148, 1160–1171.

Bankaitis, E.D., Bechard, M.E., Gu, G., Magnuson, M.A., & Wright, C.V.E. (2018).

ROCK-nmMyoII, Notch and Neurog3 gene-dosage link epithelial morphogenesis with

cell fate in the pancreatic endocrine-progenitor niche. Development 145, dev162115.

Bechard, M.E., & Wright, C.V.E. (2017). New ideas connecting the cell cycle and

pancreatic endocrine-lineage specification. Cell Cycle 16, 301–303.

Benitez, C.M., Goodyer, W.R., & Kim, S.K. (2012). Deconstructing pancreas

developmental biology. Cold Spring Harb. Perspect. Biol. 4, 1–17.

Bringold, F., & Serrano, M. (2000). Tumor suppressors and oncogenes in cellular

senescence. Exp. Gerontol. 35, 317–329.

38

Collombat, P., Mansouri, A., Hecksher-Sørensen, J., Serup, P., Krull, J., Gradwohl, G.,

& Gruss, P. (2003). Opposing actions of Arx and Pax4 in endocrine pancreas

development. Genes Dev. 17, 2591–2603.

D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G.,

Moorman, M.A., Kroon, E., Carpenter, M.K., & Baetge, E.E. (2006). Production of

pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat.

Biotechnol. 24, 1392–1401.

Dhawan, S., Tschen, S.I., & Bhushan, A. (2009). Bmi-1 regulates the Ink4a/Arf locus to

control pancreatic β-cell proliferation. Genes Dev. 23, 906–911.

Gallagher, G.R., Brehm, M.A., Finberg, R.W., Barton, B.A., Shultz, L.D., Greiner, D.L.,

Bortell, R., & Wang, J.P. (2015). Viral infection of engrafted human islets leads to

diabetes. Diabetes 64, 1358–1369.

Gao, T., McKenna, B., Li, C., et al. (2014). Pdx1 maintains β cell identity and function

by repressing an α cell program. Cell Metab. 19, 259–271.

Gradwohl, G., Dierich, A., LeMeur, M., & Guillemot, F. (2000). neurogenin3 is required

for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad.

Sci. U. S. A. 97, 1607–1611.

39

Gu, G., Dubauskaite, J., & Melton, D.A. (2002). Direct evidence for the pancreatic

lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors.

Development 129, 2447–2457.

Jain, R., & Lammert, E. (2009). Cell-cell interactions in the endocrine pancreas. Diabetes,

Obes. Metab. 11, 159–167.

Jiang, W., Hua, R., Wei, M., Li, C., Qiu, Z., Yang, X., & Zhang, C. (2015). An optimized

method for high-titer lentivirus preparations without ultracentrifugation. Sci. Rep. 5,

13875.

Karslioglu, E., Kleinberger, J.W., Salim, F.G., Cox, A.E., Takane, K.K., Scott, D.K., &

Stewart, A.F. (2011). cMyc is a principal upstream driver of β-cell proliferation in rat

insulinoma cell lines and is an effective mediator of human β-cell replication. Mol.

Endocrinol. 25, 1760–1772.

Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., & Wright, C.V.E.

(2002). The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic

progenitors. Nat. Genet. 32, 128–134.

Kido, T., Koui, Y., Suzuki, K., Kobayashi, A., Miura, Y., Chern, E.Y., Tanaka, M., &

Miyajima, A. (2015). CPM is a useful cell surface marker to isolate expandable bi-

40

potential liver progenitor cells derived from human iPS cells. Stem Cell Reports 5, 508–

515.

Kimura, A., Toyoda, T., Nishi, Y., Nasu, M., Ohta, A., & Osafune, K. (2017). Small

molecule AT7867 proliferates PDX1-expressing pancreatic progenitor cells derived from

human pluripotent stem cells. Stem Cell Res. 24, 61–68.

Kojima, N., Takeuchi, S., & Sakai, Y. (2014). Engineering of pseudoislets: Effect on

insulin secretion activity by cell number, cell population, and microchannel networks.

Transplant. Proc. 46, 1161–1165.

Kondo, Y., Toyoda, T., Inagaki, N., & Osafune, K. (2018). iPSC technology-based

regenerative therapy for diabetes. J. Diabetes Investig. 9, 234–243.

Konstantinova, I., & Lammert, E. (2004). Microvascular development: Learning from

pancreatic islets. BioEssays 26, 1069–1075.

Krah, N.M., De La O, J.-P., Swift, G.H., Hoang, C.Q., Willet, S.G., Chen Pan, F., Cash,

G.M., Bronner, M.P., Wright, C.V., MacDonald, R.J., & Murtaugh, L.C. (2015). The

acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal

adenocarcinoma. Elife 4, 1–25.

Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H.,

Richardson, M., Smart, N.G., Cunningham, J., Agulnick, A.D., D’Amour, K.A.,

41

Carpenter, M.K., & Baetge, E.E. (2008). Pancreatic endoderm derived from human

embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat.

Biotechnol. 26, 443–452.

Kudo, Y., Hiraoka, M., Kitagawa, S., Miyauchi, M., Kakuo, S., Zhao, M., Ide, T., &

Takata, T. (2002). Establishment of human cementifying fibroma cell lines by

transfection with temperature-sensitive simian virus-40 T-antigen gene and hTERT gene.

Bone 30, 712–717.

Lee, K.M., Nguyen, C., Ulrich, A.B., Pour, P.M., & Ouellette, M.M. (2003).

Immortalization with telomerase of the Nestin-positive cells of the human pancreas.

Biochem. Biophys. Res. Commun. 301, 1038–1044.

Liu, H., Yang, H., Zhu, D., et al. (2014). Systematically labeling developmental stagespecific genes for the study of pancreatic β -cell differentiation from human embryonic

stem cells. Cell Res. 24, 1181–1200.

Ludlow, J.W., Shon, J., Pipas, J.M., Livingston, D.M., & DeCaprio, J.A. (1990). The

retinoblastoma

susceptibility

gene

product

undergoes

cell

cycle-dependent

dephosphorylation and binding to and release from SV40 large T. Cell 60, 387–396.

Lundberg, A.S., Hahn, W.C., Gupta, P., & Weinberg, R.A. (2000). Genes involved in

senescence and immortalization. Curr. Opin. Cell Biol. 12, 705–709.

42

Mathis, D., Vence, L., & Benoist, C. (2001). β-Cell death during progression to diabetes.

Nature 414, 792–798.

Miyatsuka, T., Kosaka, Y., Kim, H., & German, M.S. (2011). Neurogenin3 inhibits

proliferation in endocrine progenitors by inducing Cdkn1a. Proc. Natl. Acad. Sci. U. S.

A. 108, 185–190.

Nair, G.G., Liu, J.S., Russ, H.A., et al. (2019). Recapitulating endocrine cell clustering in

culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–

274.

Nakano, Y., Negishi, N., Gocho, S., Mine, T., Sakurai, Y., Yazawa, M., Abe, K., Yagita,

H., Habu, S., Kageyama, R., Kawaguchi, Y., & Hozumi, K. (2015). Disappearance of

centroacinar cells in the Notch ligand-deficient pancreas. Genes to Cells 20, 500–511.

Narushima, M., Kobayashi, N., Okitsu, T., et al. (2005). A human beta-cell line for

transplantation therapy to control type 1 diabetes. Nat. Biotechnol. 23, 1274–1282.

Naya, F.J., Huang, H.P., Qiu, Y., Mutoh, H., DeMayo, F.J., Leiter, A.B., & Tsai, M.J.

(1997). Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine

differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11, 2323–2334.

43

Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., Stein, R.W., Magnuson, M.A., Hogan,

B.L.M., & Wright, C.V.E. (1996). PDX-1 is required for pancreatic outgrowth and

differentiation of the rostral duodenum. Development 122, 983–995.

Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H.,

Peterson, Q.P., Greiner, D., & Melton, D.A. (2014). Generation of functional human

pancreatic β cells in vitro. Cell 159, 428–439.

Ravassard, P., Hazhouz, Y., Pechberty, S., Bricout-Neveu, E., Armanet, M., Czernichow,

P., & Scharfmann, R. (2011). A genetically engineered human pancreatic β cell line

exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121, 3589–3597.

Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O’Dwyer, S.,

Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y.H.C., Johnson, J.D., & Kieffer, T.J.

(2014). Reversal of diabetes with insulin-producing cells derived in vitro from human

pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133.

Russ, H.A., Parent, A. V, Ringler, J.J., Hennings, T.G., Nair, G.G., Shveygert, M., Guo,

T., Puri, S., Haataja, L., Cirulli, V., Blelloch, R., Szot, G.L., Arvan, P., & Hebrok, M.

(2015). Controlled induction of human pancreatic progenitors produces functional betalike cells in vitro. EMBO J. 34, 1759–1772.

44

Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H.,

Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., & Ogawa, M. (2008).

Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell 132,

487–498.

Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J., Dela Cruz, F., Schwitzgebel,

V., Hayes-Jordan, A., & German, M. (2000). Homeobox gene Nkx6.1 lies downstream

of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127,

5533–5540.

Schaffer, A.E., Freude, K.K., Nelson, S.B., & Sander, M. (2010). Nkx6 Transcription

Factors and Ptf1a Function as Antagonistic Lineage Determinants in Multipotent

Pancreatic Progenitors. Dev. Cell 18, 1022–1029.

Senior, P.A., & Pettus, J.H. (2019). Stem cell therapies for Type 1 diabetes: current status

and proposed road map to guide successful clinical trials. Diabet. Med. 36, 297–307.

Shapiro, A.M.J., Lakey, J.R.T., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L.,

Kneteman, N.M., & Rajotte, R. V. (2000). Islet transplantation in seven patients with type

1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J.

Med. 343, 230–238.

45

Shapiro, A.M.J., Ricordi, C., Hering, B.J., et al. (2006). International trial of the

Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330.

Sharon, N., Vanderhooft, J., Straubhaar, J., Mueller, J., Chawla, R., Zhou, Q., Engquist,

E.N., Trapnell, C., Gifford, D.K., & Melton, D.A. (2019). Wnt Signaling Separates the

Progenitor and Endocrine Compartments during Pancreas Development. Cell Rep. 27,

2281–2291.

Shih, H.P., Kopp, J.L., Sandhu, M., Dubois, C.L., Seymour, P.A., Grapin-Botton, A., &

Sander, M. (2012). A Notch-dependent molecular circuitry initiates pancreatic endocrine

and ductal cell differentiation. Development 139, 2488–2499.

Sneddon, J.B., Borowiak, M., & Melton, D.A. (2012). Self-renewal of embryonic-stemcell-derived progenitors by organ-matched mesenchyme. Nature 491, 765–768.

Solorzano-Vargas, R.S., Bjerknes, M., Wu, S.V., Wang, J., Stelzner, M., Dunn, J.C.Y.,

Dhawan, S., Cheng, H., Georgia, S., & Martín, M.G. (2019). The cellular regulators

PTEN and BMI1 help mediate NEUROGENIN-3–induced cell cycle arrest. J. Biol. Chem.

294, 15182–15192.

Soria, B., Roche, E., Berná, G., León-Quinto, T., Reig, J.A., & Martín, F. (2000). InsulinSecreting Cells Derived From in Streptozotocin-Induced Diabetic Mice Embryonic Stem

Cells Normalize Glycemia. Diabetes 49, 157–162.

46

Sussel, L., Kalamaras, J., Hartigan-O’Connor, D.J., Meneses, J.J., Pedersen, R.A.,

Rubenstein, J.L.R., & German, M.S. (1998). Mice lacking the homeodomain transcription

factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells.

Development 125, 2213–2221.

Tanimizu, N., Nishikawa, M., Saito, H., Tsujimura, T., & Miyajima, A. (2003). Isolation

of hepatoblasts based on the expression of Dlk/Pref-1. J. Cell Sci. 116, 1775–1786.

Taylor, B.L., Liu, F.F., & Sander, M. (2013). Nkx6.1 Is Essential for Maintaining the

Functional State of Pancreatic Beta Cells. Cell Rep. 4, 1262–1275.

Traub, S., Meier, D.T., Schulze, F., Dror, E., Nordmann, T.M., Goetz, N., Koch, N.,

Dalmas, E., Stawiski, M., Makshana, V., Thorel, F., Herrera, P.L., Böni-Schnetzler, M.,

& Donath, M.Y. (2017). Pancreatic α Cell-Derived Glucagon-Related Peptides Are

Required for β Cell Adaptation and Glucose Homeostasis. Cell Rep. 18, 3192–3203.

Veres, A., Faust, A.L., Bushnell, H.L., Engquist, E.N., Kenty, J.H.R., Harb, G., Poh, Y.C.,

Sintov, E., Gürtler, M., Pagliuca, F.W., Peterson, Q.P., & Melton, D.A. (2019). Charting

cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373.

Yabe, S.G., Fukuda, S., Takeda, F., Nashiro, K., Shimoda, M., & Okochi, H. (2017).

Efficient Generation of Functional Pancreatic β Cells from Human iPS Cells. J. Diabetes

9, 168–179.

47

Yabe, S.G., Fukuda, S., Nishida, J., Takeda, F., Nashiro, K., & Okochi, H. (2019).

Induction of functional islet-like cells from human iPS cells by suspension culture. Regen.

Ther. 10, 69–76.

Yamashita-Sugahara, Y., Matsumoto, M., Ohtaka, M., Nishimura, K., Nakanishi, M.,

Mitani, K., & Okazaki, Y. (2016). An inhibitor of fibroblast growth factor receptor-1

(FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine

progenitors. Sci. Rep. 6, 35908.

Zhou, Q., & Melton, D.A. (2018). Pancreas regeneration. Nature 557, 351–358.

Zhu, Z., Li, Q. V., Lee, K., Rosen, B.P., González, F., Soh, C.L., & Huangfu, D. (2016).

Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals

Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell 18, 755–768.

48

acinar

(exocrine cells)

liver

islet

(endocrine cells)

duodenum

pancreas

duodenum

centroacinar / interlobular / main

terminal duct

duct

pancreatic duct

centroacinar / terminal duct

islet

β cell : insulin

α cell : glucagon

duct

δ cell : somatostatin

islet

microvascular network

acinar

Figure 1. Structure of the pancreas and pancreatic islet

(A) Structure of the pancreas. Pancreatic juice, including digestive enzymes, is secreted from the

exocrine cells and is released into the duodenum through pancreatic ducts. The acinar structure is

consisted of exocrine cells and connects to centroacinar / terminal duct, and the islet structure is

composed of endocrine cells. (B) Hematoxylin and eosin (H&E) staining of pancreas sections

from adult mouse. (C) Structure of the islet. The pancreatic islet is composed of several hormoneproducing cells such as β cells, α cells, and δ cells and microvascular network.

49

~ E8.5

Dorsal

E8.5

E9.5 ~ 12.5

E13.5

E14.5~

bud

rotate

Ventral

Pancreatic

region

Pancreatic

buds

Multipotent

progenitors

“Tip-trunk“

formation

Pancreatic structure

formation

Tip (Ptf1a+)

Trunk (Nkx6.1+)

Endocrine progenitors

(Ngn3+ cells)

NGN3 expression :

Tip

Acinar

Duct

Trunk

Islet of Langerhans

Figure 2. Pancreatic development in the mouse

(A) Pancreatic development in embryonic day (E) 8.5 to E14.5. Dorsal and ventral pancreatic

buds arise E8.5. From E9.5 to E12.5, Pdx1+/Ptf1a+/Nkx6.1+ multipotent pancreatic progenitor

cells expand. Each pancreatic bud forms a branching structure and is compartmentalized into the

tip-trunk region in E13.5. At around E14.5, the ventral pancreatic bud rotates to dorsally, and

these buds fuse to form one pancreas. (B) “tip-trunk” region development. The tip region

differentiates the exocrine acinar. The trunk region mostly becomes the duct structure, and some

cells differentiate endocrine cells cluster islet of Langerhans.

50

Day

hiPSCs

DE

PFG

PP

EP

12

20

Stage 1

Stage 2

Stage 3

Stage 4

Activin A

CHIR99021

SANT-1

Dorsomorphin

SB431542

EC23

Indolactam V

FGF10

SANT-1

Dorsomorphin

SB431542

EC23

Indolactam V

Repsox

SANT-1

Dorsomorphin

Repsox

DAPT

IGF

Extendin4

EGF

Figure 3. Summary of the four stepwise differentiation protocol from human iPS cells

hiPSCs, human induced pluripotent stem cells; DE, definitive endoderm; PFG, posterior foregut;

PP, pancreatic progenitor; EP, endocrine progenitor; FGF10, fibroblast growth factor 10; IGF,

insulin-like growth factor ; EGF, epidermal growth factor.

51

PP-stage

Isotype control

(APC)

PDX1

(APC)

CXCR4 / c-Kit

positive cells (%)

80

60

40

20

DE

PDX1 positive cells (%)

CXCR4

(APC)

100

Isotype control

(APC)

Autofluorescence

(FITC)

c-Kit

(PE-Cy7)

Autofluorescence

(FITC)

Isotype control

(APC)

EP-stage

Autofluorescence

(FITC)

Isotype control

(PE-Cy7)

Autofluorescence

(FITC)

DE-stage

100

80

60

40

20

PP

NGN3

(APC)

NGN3 positive cells (%)

100

80

60

40

20

EP

Figure 4. Differentiation efficiency of each stage by flow cytometry analysis

(A-C) Flow cytometry analysis of the stage specific markers were performed. Ratio of CXCR4

and c-Kit double positive cells in definitive endoderm (DE)-stage (A), PDX1 positive cells in

pancreatic progenitor (PP)-stage (B), NGN3 positive cells in endocrine progenitor (EP)-stage (C).

Each gate defined by isotype negative control. Error bar represents the mean + SD of four

independent experiments.

52

hIveNry

-hiPSCs

PFG

PP

EP

(NGN3+)

Islet

(INS+)

mCherry (+)

Venus (+)

EP stage

5年以内に雑誌等で刊行予定のため、非公開。

mCherry/Venus

DE

Figure 5. Double knock-in INS-Venus/NGN3-mCherry (hIveNry) hiPSC-line

(A) Schematic illustration of differentiate into pancreatic islets from hiPSCs using hIveNry cellline. In hIveNry cells, Venus and mCherry cDNA were inserted under the control of INS and

NGN3 promoter at the ATG of the coding region, respectively (Yamashita-Sugahara et al., 2016).

(B) The live cell picture of EP-stage cells differentiated from hIveNry hiPSCs by fluorescence

microscopy. Scale bars, 100 μm. hiPSCs, human induced pluripotent stem cells; DE, definitive

endoderm; PFG, posterior foregut; PP, pancreatic progenitor; EP, endocrine progenitor; NGN3,

Neurogenin3; INS, Insulin.

53

mCherry

Brightfield

NGN3-mCherry

NGN3mCherryhigh

NGN3

-mCherryhigh

NGN3mCherrylow

NGN3

5年以内に雑誌等で刊行予定のため、非公開。

-mCherrylow

NGN3

-mCherry(-)

NGN3mCherry(-)

Autofluorescence (APC)

pre-sorted

Figure 6. Purification of hiPSC-derived EP cells by using NGN3-mCherry reporter

(A) Flow cytometry analysis of NGN3-mCherry expression was performed in EP-stage cells

derived from hiPSCs. EP-stage cells were divided into the following three fraction by expression

of mCherry, NGN3-mCherry(-), NGN3-mCherrylow, and NGN3-mCherryhigh. (B) The live cell

picture on day 1 in suspension culture after cell sort by fluorescence microscopy. Left panels,

mCherry fluorescence; right panels, brightfield. Scale bars, 100 μm.

54

Relative expression

( /GAPDH, pre-sorted=1)

NGN3

4.5

3.5

2.5

1.5

0.5

NEUROD1

**

3.5

2.5

1.5

0.5

NKX2.2

3.5

2.5

1.5

0.5

**

5年以内に雑誌等で刊行予定のため、非公開。

NGN3-mCherry

NGN3-mCherry

NGN3-mCherry

Relative expression

( /GAPDH, pre-sorted=1)

PDX1

2.5

1.5

0.5

NGN3-mCherry

Figure 7. Gene expression analysis of EP and PP markers

(A & B) mRNA expression was analyzed by qRT-PCR and shown are the relative expression

levels of the EP marker gene NGN3, NEUROD1, and NKX2.2 (A) and the PP gene PDX1 (B), in

pre-sorted, NGN3-mCherry(-), NGN3-mCherrylow, and NGN3-mCherryhigh cells. Expression level

of each gene is shown as relative expression level of averaged pre-sorted sample as 1.0. Error bar

represents the mean + SD of 4 independent experiments. Statistical analysis was performed using

the Turkey-Kramer test. * and **, significantly different from each of the other three fractions. *P

< 0.05, ** P < 0.01.

55

Day

EP

islet

10

Stage 5

DAPT

SANT1

Repsox

IGF

Ex-4

GLP1

5年以内に雑誌等で刊行予定のため、非公開。

NGN3

-mCherryhigh

Brightfield

INS-Venus

pre-sorted

NGN3

-mCherrylow

Figure 8. Differentiation of EP cells into pancreatic islet-like structures

(A) Summary of the differentiation protocol from EP cells to islets. (B) Representative images of

hiPSC-derived islets from pre-sorted, NGN3-mCherrylow, or NGN3-mCherryhigh cells with INSVenus. Scale bars = 100 μm. EP, endocrine progenitor.

56

INS

Relative expression

( /GAPDH, pre-sorted=1)

3.5

SST

GCG

4.5

3.5

2.5

1.5

2.5

5年以内に雑誌等で刊行予定のため、非公開。

1.5

0.5

NGN3-mCherry

0.5

NGN3-mCherry

NGN3-mCherry

Figure 9. Expression analysis of endocrine markers

mRNA expression was analyzed by qRT-PCR and shown are the relative expression levels of the

endocrine marker gene INS (insulin), GCG (glucagon), and SST (somatostatin), in pre-sorted,

NGN3-mCherrylow, and NGN3-mCherryhigh cells. Expression level of each gene is shown as

relative expression level of pre-sorted sample as 1.0. Error bar represents the mean + SD of 3

independent experiments. Statistical analysis was performed using the Turkey-Kramer test. *,

significantly different from each of the other two fractions. *P < 0.05.

57

NGN3-mCherrylow NGN3-mCherryhigh

C-pep/GCG/SST

pre-sorted

+ DAPI

5年以内に雑誌等で刊行予定のため、非公開。

Figure 10. Expression of endocrine markers in islets derived from hiPSCs

Immunofluorescent staining of spheroids from pre-sorted, NGN3-mCherrylow, or NGN3mCherryhigh cells was performed with antibodies recognizing insulin precursor C-peptide (C-pep,

green), glucagon (GCG, red), and somatostatin (SST, blue), together with nuclear staining (white)

using 4'-6- diamidino-2-phenylindole (DAPI). Scale bars = 50μm.

58

250

250

250

C-peptide (pM / 2×106 cells)

pre-sorted

200

200

NGN3-mCherrylow

200

NGN3-mCherryhigh

Lot #2

Lot #3

150

150

150

100

100

Lot #1

100

5年以内に雑誌等で刊行予定のため、非公開。

5050

50

00

Glucose

pre-sorted

NGN3

NGN3

low

-mCherry -mCherryhigh

pre-sorted

NGN3

NGN3

low

-mCherry

-mCherryhigh

Figure 11. Insulin secretion from hiPSC-derived islets

Glucose-stimulated insulin secretion (GSIS) of pancreatic islets derived from pre-sorted, NGN3-

mCherrylow cells, or NGN3-mCherryhigh cells. C-peptides secreted in supernatant of culture with

indicated glucose concentrations for 1 hour were determined. The y-axis shows total secreted Cpeptide normalized to cell numbers. Left graph represents average of the 3 independent

experiments. Error bar represents the mean + SD of 3 independent experiments. Right graph

represent the secretion of each lot.

59

DE-stage

PP-stage

EP-stage

Autofluorescence

(FITC)

hiPSCs

Ki67 positive cells / all cells (%)

Ki67

(APC)

90

80

70

60

50

40

30

20

10

hiPSCs DE

PP

EP

Figure 12. Expression of Ki67, a cell proliferation marker, by flow cytometry analysis in

each stage

(A) Flow cytometry analysis of Ki67 expression in stepwise differentiation from hiPSCs to EPstage cells. (B) The percentage of cells positive for Ki67 in stepwise differentiation from hiPSCs

to EP-stage cells. Error bar represents the mean + SD of 4 independent experiments. hiPSCs,

human induced pluripotent stem cells; DE, definitive endoderm; PFG, posterior foregut; PP,

pancreatic progenitor; EP, endocrine progenitor.

60

Anti-NGN3

Ki67 positive cells / all cells (%)

Anti-Ki67

16

**

14

12

10

NGN3

Figure 13. Expression of Ki67 in EP-stage cells

(A) Flow cytometry analysis of NGN3 and Ki67 in EP-stage cells. (B) A comparison of the

percentage of Ki67 positive cells in NGN3(-) and NGN3(+). Error bar represents the mean + SD

of five independent experiments. Statistical analysis was performed using the Mann-Whitney U

test. **P < 0.01.

61

Cell sort

(EP-stage cells)

Passage

NGN3

-mCherryhigh

Day

-2

Culture condition

2D

12

3D

Stage 4

Culture medium

Cell number (x105 cells)

1.5

**

0.5

12

Days

Figure 14. Cell growth arrest of NGN3-mCherryhigh cells

(A) Schematic image of culture methods of NGN3-mcherryhigh cells for 12 days. NGN3-

mCherryhigh cells were sorted from EP-stage cells, cultured for 2 days on 2 dimensional (2D)

culture in Stage 4 medium, and passaged every 4 days on 3 dimensional (3D) cultured in Stage 4

medium. (B) Growth curve of NGN3-mCherryhigh cells for 12 days. Error bar represents the mean

± SD of 4 independent experiments. Statistical analysis was performed using the Mann-Whitney

U test. * and **, significantly different from day 0. *P < 0.05, ** P < 0.01.

62

Lentivirus vector

5’LTR

GOI

EF1a

Transduction

(Lentivirus)

SIN

Gene

SV40LT

hTERT

cMYC

BMI1

Passage

NGN3

-mCherryhigh

Day

Culture condition

-2

2D

12

3D

Culture medium

Stage 4

Figure 15. Structure of lentivirus vector and culture methods for the expansion of NGN3mCherryhigh cells

63

**

Figure 16. Growth curve of NGN3-mCherryhigh cells expressing growth-promoting genes by

lentivirus

Error bar represents the mean ± SD of three independent experiments (SV40LT and GFP

(negative control)) and a single experiment (c-MYC, hTERT, and BMI1). Statistical analysis was

performed using the Student’s t test. * and **, significantly different from SV40LT of day 0. *P <

0.05, ** P < 0.01.

64

NGN3-mCherryhigh

Figure 17. Induction and removal of SV40LT expression in NGN3-mCherryhigh cells by using

SV40LT-loxP and LV-Cre lentivirus vectors

65

Figure 18. Growth curve of NGN3-mCherryhigh cells expressing SV40LT genes by lentivirus

Blue line denotes cells transduced with SV40LT-loxP, and the black line denotes these without

transduction. Error bar represents the mean ± SD of five independent experiments.

66

Relative expression

(/GAPDH, passage 0 = 1)

NGN3

NKX2.2

1.2

1.2

1.4

1.2

0.8

0.8

0.6

0.6

0.8

**

0.4

0.4

0.2

0.2

Passage

Relative expression

(/GAPDH, passage 0 = 1)

NEUROD1

**

0.4

0.2

0 1 2 3 4 5

0 1 2 3 4 5

SUSD2

PDX1

1.4

1.2

2.5

0.6

0 1 2 3 4 5

0.8

0.6

0.4

1.5

0.5

0.2

Passage

0 1 2 3 4 5

0 1 2 3 4 5

Figure 19. Expression of EP markers in expanded NGN3-mCherryhigh cells

qRT-PCR analysis of endocrine progenitor markers (NGN3, NEUROD1, and NKX2.2) and an

endocrine progenitor surface marker SUSD2 and a pancreatic progenitor marker PDX1 in

expanded NGN3-mCherryhigh cells during five passages. Expression level of each gene is shown

relative expression level of averaged passage 0 samples as 1.0. Error bar represents the mean +

SD of 3 independent experiments. Statistical analysis was performed using the Student’s t test. *

and **, significantly different from passage 0. *P < 0.05, ** P < 0.01.

67

Day

+ SV40LT-loxP

± LV-Cre

NGN3-mCherryhigh

Expanded

NGN3-mCherryhigh

-28 ~ -14

Culture condition

2D

3D

10

3D

Stage 4

Culture medium

Figure 20. Schematic image of culture method of expanded NGN3-mcherryhigh cells treated

with or without LV-Cre.

After expansion of NGN3-mCherryhigh cells, cultured for 1 day on 2D culture in Stage 4 medium

to transduce LV-Cre, and cultured 9 days on 3D cultured in Stage 4 medium.

68

Non-transduced

Cell number

SV40LT-loxP (no Cre)

SV40LT-loxP + LV-Cre

SV40LT

Figure 21. Expression of SV40LT estimated by flow cytometric analysis

Flow cytometric analysis of SV40LT expression with or without LV-Cre induction shown by

histogram plotting. Black box indicates negative control experiments (Non-transduced of

lentivirus in NGN3-mCherryhigh cells), blue box and orange box indicate transduced without or

with LV-Cre, respectively.

69

Cell number (x105 cells)

3.5

Control

LV-Cre

2.5

1.5

0.5

10

Days

Figure 22. Growth curve of NGN3-mCherryhigh cells treated with or without LV-Cre

Orange line donates transduced with LV-Cre, and blue line denotes without lentivirus transduction

(Control). Error bar represents the mean ± SD of three independent experiments.

70

LV-Cre

Brightfield

NGN3

-mCherry

Control

Figure 23. Representative images of NGN3-mCherryhigh cells treated with or without LV-Cre

The live cell picture on day 10 in suspension culture after transduced with or without LV-Cre.

Upper, mCherry fluorescence; lower, brightfield. Scale bars, 100 μm.

71

Relative expression

(/GAPDH, control=1)

NGN3

10

**

NEUROD1

3.5

1.5

Control LV-Cre

2.5

NKX2.2

0.5

Control LV-Cre

Control LV-Cre

Figure 24. Transduction of LV-Cre rescues expression of endocrine-lineage commitment

genes in NGN3-mCherryhigh cells

qRT-PCR analysis of endocrine progenitor markers NGN3, NEUROD1, and NKX2.2 in NGN3mCherryhigh cells transduced with LV-Cre compared with the cells without Cre. Expression level

of each gene is shown relative expression levels of averaged control sample as 1.0. Error bar

represents the mean + SD of five independent experiments. Statistical analysis was performed

using the Mann-Whitney U test. *P < 0.05, **P < 0.01.

72

NGN3-mCherryhigh

+ SV40LT-loxP

Islets (INS+)

± LV-Cre

Day -2

-1

10

Culture condition

2D

3D

Culture medium

Stage 4

Stage 5

C-peptide (pM / 2×106 cells)

400

400

400

Lot #1

300

300

300

Lot #2

Lot #3

200

200

200

100

100

100

00

2.5mM

25mM

Glucose

2.5mM

25mM

Glucose

Figure 25. Pancreatic islet differentiation from NGN3-mCherryhigh cells immediately after

LV-Cre transduction

(A) Schematic differentiation into hiPSC-derived islets from expanded NGN3-mCherryhigh cells

immediately after LV-Cre transduction. (B) Glucose challenge test; islets derived from expanded

NGN3-mCherryhigh cells immediately after LV-Cre infection were cultured in the presence of

indicated glucose concentrations for 1 hour and the amounts of C-peptide in the supernatant were

examined. The y-axis shows total secreted C-peptide normalized by cell numbers. Left graph

represents average of the 3 independent experiments. Error bar represents the mean + SD of 3

independent experiments. Right graph represent the secretion of each lot.

73

NGN3-mCherryhigh

+ SV40LT-loxP

C-peptide (pM / 2×106 cells)

400

400

300

300

400

Control

LV-Cre

300

Lot #1

Lot #2

Lot #3

200

200

200

100

100

100

Glucose

Control

LV-Cre

Control

LV-Cre

Figure 26. Differentiation into pancreatic islets from expanded NGN3-mCherryhigh cells

(A) Schematic image of differentiation into hiPSC-derived islets from expanded NGN3mCherryhigh cells with or without LV-Cre. (B) Glucose challenge test; islets derived from

expanded NGN3-mCherryhigh cells with or without transduction with LV-Cre were cultured using

indicated glucose concentrations for 1 hour and the amounts of C-peptide in the supernatant were

examined. The y-axis shows total secreted C-peptide normalized by cell numbers. Left graph

represents average of the 3 independent experiments. Error bar represents the mean + SD of 3

independent experiments. Right graph represent the secretion of each lot.

74

EP cells

(NGN3+)

Islet differentiation

(Stage 5)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る