リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Determining the effect of water temperature on the T1 and T2 relaxation times of the lung tissue at 9.4 T MRI: A drowning mouse model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Determining the effect of water temperature on the T1 and T2 relaxation times of the lung tissue at 9.4 T MRI: A drowning mouse model

児玉, 早 東京慈恵会医科大学 DOI:info:doi/10.1016/j.legalmed.2020.101836

2021.10.22

概要

Japanese individuals have a unique culture of soaking in a bathtub, and forensic pathologists have experienced fatal cases due to drowning. However, T1 and T2 relaxation times of a drowning lung are poorly documented.

 In the present study, we investigated the relationship between drowning water temperature and T1 and T2 relaxation times of drowning lung tissues at 9.4 T MRI (Bruker, BioSpec94/20USR). The mice used as animal drowning models were directly submerged in freshwater. Water temperature was set to 8℃–10℃(cold), 20℃–22℃(normal), 30℃, and 45℃. The regions of interest (ROIs) on the axial section of the third slice were set at the central and peripheral areas of each—the left and the right—lung. T1 relaxation times measured immediately after death differed by the presence or absence of soaking water, except in case of cold water temperature. In the drowning groups, T1 relaxation time showed a linear dependency on water temperature. By contrast, T2 relaxation time was almost constant regardless of the presence of drowning under the same tem- perature condition; when compared in the lung areas of the same individuals, the times were uniformly reduced in drowning models. To minimize the effects of hypostasis and decomposition, we performed measurements immediately after death and were able to determine the noticeable difference in drowning water temperature. These results may be useful for qualitative assessments of a drowning lung and may serve as a basis when im-aging the human body during forensic autopsy cases.

参考文献

[1] N. Beckmann, B. Tigani, L. Mazzoni, J.R. Fozard, MRI of lung parenchyma in rats and mice using a gradient-echo sequence, NMR Biomed. 14 (5) (2001) 297–306, https://doi.org/10.1002/(ISSN)1099-149210.1002/nbm.v14:510.1002/nbm.706.

[2] L.E. Olsson, P.D. Hockings, V. Scho¨pf, In vivo measurements of T2 relaxation time of mouse lungs during inspiration and expiration, PLoS One. 11 (12) (2016) e0166879, https://doi.org/10.1371/journal.pone.0166879.

[3] A.G. Cutillo, P.H. Chan, D.C. Ailion, S. Watanabe, K.H. Albertine, C.H. Durney, C. B. Hansen, G. Laicher, R.F. Scheel, A.H. Morris, Effects of endotoxin lung injury on NMR T2relaxation, Magn Reson Med. 39 (2) (1998) 190–197, https://doi.org/ 10.1002/mrm.1910390205.

[4] D.F. Alamidi, S.S.I. Kindvall, P.L. Hubbard Cristinacce, D.M. McGrath, S.S. Young, J.H. Naish, J.C. Waterton, P. Wollmer, S. Diaz, M. Olsson, P.D. Hockings, K. M. Lagerstrand, G.J.M. Parker, L.E. Olsson, A. Larcombe, T1 Relaxation time in lungs of asymptomatic smokers, PLoS One 11 (3) (2016) e0149760, https://doi. org/10.1371/journal.pone.0149760.

[5] M.T.A. Buzan, A. Wetscherek, C.P. Heussel, M. Kreuter, F.J. Herth, A. Warth, H.- U. Kauczor, C.M. Pop, J. Dinkel, G. Zissel, Texture analysis using proton density and T2 relaxation in patients with histological usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP), PLoS One 12 (5) (2017) e0177689, https://doi.org/10.1371/journal.pone.0177689.

[6] N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev. 73 (7) (1948) 679–712, https://doi.org/10.1103/ PhysRev.73.679.

[7] C.J. Lewa, Z. Majewska, Temperature relationships of proton spin-lattice relaxation time T1 in biological tissues, Bull. Cancer 67 (5) (1980) 525–530.

[8] T.R. Nelson, S.M. Tung, Temperature dependence of proton relaxation times in vitro, Magn. Reason Imaging. 5 (3) (1987) 189–199, https://doi.org/10.1016/ 0730-725x(87)90020-8.

[9] P.A. Bottomley, T.H. Foster, R.E. Argersinger, L.M. Pfeifer, A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age, Med. Phys. 11 (4) (1984) 425–448, https://doi.org/10.1118/1.595535.

[10] C. Birkl, C. Langkammer, J. Haybaeck, C. Ernst, R. Stollberger, F. Fazekas, S. Ropele, Temperature-induced changes of magnetic resonance relaxation times in the human brain: a postmortem study, Magn. Reason. Med. 71 (4) (2014) 1575–1580, https://doi.org/10.1002/mrm.24799.

[11] S. Shiotani, T. Kobayashi, H. Hayakawa, K. Homma, H. Sakahara, Hepatic relaxation times from postmortem MR imaging of adult humans, Magn. Reason. Med. Sci. 15 (3) (2016) 281–287, https://doi.org/10.2463/mrms.mp.2015-0086.

[12] S.S.I. Kindvall, S. Diaz, J. Svensson, P. Wollmer, D. Slusarczyk, L.E. Olsson, Influence of age and sex on the longitudinal relaxation time, T1, of the lung in healthy never-smokers, J. Magn. Reason. Imaging 43 (5) (2016) 1250–1257, https://doi.org/10.1002/jmri.25085.

[13] O. Dietrich, T. Gaass, M.F. Reiser, T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—a meta- analysis, Eur. J. Radiol. 86 (2017) 252–260, https://doi.org/10.1016/j. ejrad.2016.11.027.

[14] F. Satoh, M. Osawa, I. Hasegawa, Y. Seto, A. Tsuboi, Dead in hot bathtub phenomenon: accidental drowning or natural disease? Am. J. Forensic Med. Pathol. 34 (2) (2013) 164–168, https://doi.org/10.1097/PAF.0b013e31828d68c7.

[15] Y. Kanawaku, T. Tanifuji, Y. Ohno, Association between sudden unexpected deaths in bathtubs and ambient temperature among elderly Japanese adults: a time-series regression study, Leg. Med. 2019 (36) (2018) 21–27, https://doi.org/10.1016/j. legalmed.2018.09.021.

[16] W.H. Hsieh, C.H. Wang, T.H. Lu, Drowning mortality by intent: a population-based cross-sectional study of 32 OECD countries, 2012–2014, BMJ Open 8 (7) (2018) 1–6, https://doi.org/10.1136/bmjopen-2018-021501.

[17] T. Hayashi, Y. Ishida, S. Mizunuma, A. Kimura, T. Kondo, Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression, Int. J. Legal. Med. 123 (1) (2009) 7–13, https://doi.org/ 10.1007/s00414-008-0235-5.

[18] H. Maeda, B.-L. Zhu, T. Ishikawa, L.i. Quan, T. Michiue, Y. Bessho, S. Okazaki, Y. Kamikodai, K. Tsuda, A. Komatsu, Y. Azuma, Analysis of postmortem biochemical findings with regard to the lung weight in drowning, Leg. Med. 11 (2009) S269–S272, https://doi.org/10.1016/j.legalmed.2009.01.029.

[19] D. Yajima, G.o. Inokuchi, Y. Makino, A. Motomura, F. Chiba, S. Torimitsu, R. Yamaguchi, Y. Hoshioka, D. Malakiene˙, R. Raudys, H. Iwase, Diagnosis of drowning by summation of sodium, potassium, and chloride ion levels in sphenoidal sinus fluid: differentiating between freshwater and seawater drowning and its application to brackish water and bathtub deaths, Forensic Sci. Int. 284 (2018) 219–225, https://doi.org/10.1016/j.forsciint.2018.01.013.

[20] P.S. Vander, E. De Letter, M. Piette, G. Van Parys, J.W. Casselman, K. Verstraete, Post-mortem evaluation of drowning with whole body CT, Forensic Sci. Int. 249 (2015) 35–41, https://doi.org/10.1016/j.forsciint.2015.01.008.

[21] S. Mishima, H. Suzuki, T. Fukunaga, Y. Nishitani, Postmortem computed tomography findings in cases of bath-related death: applicability and limitation in forensic practice, Forensic Sci. Int. 282 (2018) 195–203, https://doi.org/10.1016/ j.forsciint.2017.11.030.

[22] T. Miyazato, T. Ishikawa, T. Michiue, H. Maeda, Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia, Int. J. Legal Med. 126 (4) (2012) 581–587, https://doi.org/10.1007/ s00414-012-0698-2.

[23] J.M. Wild, H. Marshall, M. Bock, L.R. Schad, P.M. Jakob, M. Puderbach, F. Molinari, E.J.R. Van Beek, J. Biederer, MRI of the lung (1/3): methods, Insights Imaging. 3 (4) (2012) 345–353, https://doi.org/10.1007/s13244-012-0176-x.

[24] S. Kawai, Y. Takagi, S. Kaneko, T. Kurosawa, Effect of three types of mixed anesthetic agents alternate to ketamine in mice, Exp. Anim. 60 (5) (2011) 481–487, https://doi.org/10.1538/expanim.60.481.

[25] J.-J. Yuan, X.-T. Zhang, Y.-T. Bao, X.-J. Chen, Y.-Z. Shu, J.-L. Chen, W. Chen, B. Du, Q.-F. Pang, Heme oxygenase-1 participates in the resolution of seawater drowning- induced acute respiratory distress syndrome, Respir. Physiol. Neurobiol. 247 (2018) 12–19, https://doi.org/10.1016/j.resp.2017.08.016.

[26] F. Aeffner, B. Bolon, I.C. Davis, Mouse models of acute respiratory distress syndrome, Toxicol. Pathol. 43 (8) (2015) 1074–1092, https://doi.org/10.1177/0192623315598399.

[27] A. Christe, E. Aghayev, C. Jackowski, M.J. Thali, P. Vock, Drowning - post-mortem imaging findings by computed tomography, Eur. Radiol. 18 (2) (2008) 283–290, https://doi.org/10.1007/s00330-007-0745-4.

[28] I.R. Young, J.W. Hand, A. Oatridge, M.V. Prior, Modeling and observation of temperature changes in vivo using MRI, Magn. Reason Med. 32 (3) (1994) 358–369, https://doi.org/10.1002/mrm.1910320311.

[29] M. Estilaei, A. MacKay, K. Whittall, J. Mayo, In vitro measurements of water content and T2relaxation times in lung using a clinical MRI scanner, J. Magn. Reason Imaging 9 (5) (1999) 699–703, https://doi.org/10.1002/(SICI)1522-2586 (199905)9:5<699::AID-JMRI12>3.0.CO;2-H.

[30] H. Hyodoh, J. Shimizu, M. Rokukawa, S. Okazaki, K. Mizuo, S. Watanabe, Postmortem computed tomography findings in the thorax - experimental evaluation, Leg. Med. 2016 (19) (2015) 96–100, https://doi.org/10.1016/j. legalmed.2015.07.015.

[31] S. Thayyil, N.J. Sebire, L.S. Chitty, et al., Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS Protocol), BMC Pediatr. 11 (1) (2011), https://doi.org/10.1186/1471- 2431-11-120.

[32] S. Thayyil, N.J. Sebire, L.S. Chitty, et al., Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study, Lancet 382 (9888) (2013) 223–233, https://doi.org/10.1016/S0140-6736(13)60134-8.

[33] S. Thayyil, M. Chandrasekaran, L.S. Chitty, et al., Diagnostic accuracy of post- mortem magnetic resonance imaging in fetuses, children and adults: a systematic review, Eur. J. Radiol. 75 (1) (2010) e142–e148, https://doi.org/10.1016/j. ejrad.2009.10.007.

[34] O.J. Arthurs, A. Guy, S. Thayyil, et al., Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI, Eur. Radiol. 26 (7) (2016) 2327–2336, https://doi.org/10.1007/s00330-015-4057-9.

[35] P. Montaldo, S. Addison, V. Oliveira, et al., Quantification of maceration changes using post mortem MRI in fetuses, BMC Med. Imaging 16 (1) (2016), https://doi. org/10.1186/s12880-016-0137-9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る