リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「オクタカルシウムフォスフェート・コラーゲン複合体(OCP/Col)による垂直的骨造成」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

オクタカルシウムフォスフェート・コラーゲン複合体(OCP/Col)による垂直的骨造成

柳沢 俊樹 東北大学

2020.09.25

概要

OCP/Col は優れた骨再生能と生体吸収性を有し,骨欠損を対象として既に製品化されているが,外力や多核巨細胞 (MNGCs) による吸収による試料変形のため,有効な垂直的骨造成は達成できていない。

本研究では,はじめに,外力を緩和するためにポリ乳酸 (PLA) ケージで OCP/Col で被覆し,さらに骨再生能を促進するために,副甲状腺ホルモン (PTH) を滴下した試料を準備した。そして,それらをラット頭蓋冠上の骨膜下に埋入し,垂直的骨造成が可能かどうかを検討した。PLA ケージの被覆によって,OCP/Col の形状は維持されるとともに,OCP/Col 内への線維組織の侵入を阻害した。新生骨は既存骨表面あるいはPLA ケージに沿って形成され、結果的に有効な垂直的骨造成を達成することができた 。しかし,OCP/Col にPLA を併用する場合,PLA が体内に長期間滞留するため,摘出する必要がある。

そこで,この課題を解決するため,OCP/Col 作製時の予備凍結条件や試料密度を変更することで,OCP/Col 単独で垂直的骨造成が可能かどうかを,ラット頭蓋冠上の骨膜下に埋入し検討し た。予備凍結を液体窒素冷却で行うことで,MNGCs による吸収を抑制し,骨形成に必要な足場が確保でき,形状が保持された。そして,OCP/Col 濃度を増加させることにより,さらに形状が安定し,新生骨形成量も増加し,OCP/Col 単独によ る垂直的骨造成の可能性が示唆された。

この論文で使われている画像

参考文献

1 .玄丞烋 . スキャホールド 生分解吸収性高分子 . 岡野光夫,大和雅之 編 . 再生医療技術の最前線 : 株式会社シーエムシー出版; 2013. p. 1-7.

2 .田畑泰彦 . バイオマテリアル足場技術の現状と今後 - 再生治療と再生研究-. 辻賢司編 . 再生医療用足場材料の開発と市場 : 株式会社シーエムシー出版 ; 2016. p. 3-13.

3 .澤芳樹 . 再生医療の最前線 . 医療と社会. 2018; 28 No.1: 93-102.

4 .Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988; 23(1 Pt 2): 3-9.

5 . Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260(5110): 920-6.

6 .中内啓光 . 幹細胞研究と再生医療 . 中内啓光 編 . 幹細胞研究と再生医療 : 南山堂; 2013. p. 3.

7 .Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978; 4(1-2): 7-25.

8 .石川烈,岩田隆紀 . 歯周病の再生医療 . 上田実 , 朝比奈泉 編 . 再生医療叢書 歯学系 : 朝倉書店; 2012. p. 40-86.

9 .Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126(4): 677-89.

10. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones, JP. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391): 1145-7.

11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-72.

12. 立石哲也 . 再生軟骨のための材料技術 . 立石哲也 編 . ここまできた人工骨・関節ーバイオマテリアルから再生医工学へー : 米田出版; 2012. p. 75-94.

13. 松本歯科大学大学院硬組織研究グループ . ホルモン・サイトカインとそれらの受容体 .香西敏男 編 Hard Tissue 硬組織研究ハンドブック : MDU( 松本歯科大学)出版 会 ; 2005. p. 84-147.

14. 紙谷聡英,近田裕美 . 肝臓の再生医療に向けた幹細胞研究の進展 . In: 中内啓光 編幹細胞研究と再生医療 : 南山堂 ; 2013. p. 183-91.

15. 山岡哲二 . バイオロジカルスキャホールド . 人工臓器 . 2011; 40 巻 : 231-5.

16. Akao M, Aoki H, Kato K. Flexural strength of mixed hydroxyapatite-tricalcium phosphate ceramics. Tokyo Ika Shika Daigaku Iyo Kizai Kenkyusho Hokoku. 1981; 15: 17-22.

17. 玄丞烋 . 生体内分解吸収性高分子材料. BME. 1990; 4: 41-50.

18. 玄丞烋 . 再生歯科医学のための生体材料開発の現状と展望 . ザ・クインテッセンス. 2003; 22: 485-90.

19. 勝部好裕,弓場俊輔,大串始 . 間葉系幹細胞を使った骨再生 . 脇谷滋之 , 鄭雄一 編 . 再生医療叢書 骨格系 : 朝倉書店 ; 2012. p. 92-107.

20. Block JE, Thorn MR. Clinical indications of calcium-phosphate biomaterials and related composites for orthopedic procedures. Calcif Tissue Int. 2000; 66(3): 234-8.

21. 名井 陽 . 人工骨の歴史と最新デザインコンセプト . 人工臓器 . 2011; 40 巻 : 76-80.

22. Nagai H, Kobayashi-Fujioka M, Fujisawa K, Ohe G, Takamaru N, Hara K, Uchida D, Tamatani T, Ishikawa K, Miyamoto Y. Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. J Mater Sci Mater Med. 2015; 26(2): 99.

23. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001; 22(13): 1705-11.

24. 久森紀之 , 大塚雄市 . 初学者のためのバイオマテリアル 3. セラミック系バイオマテリアル. Jornal of the Society of Materials Science. 2014; 63 巻 : 563-8.

25. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res. 1985; 19(6): 685-98.

26. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res. 2002; 59(1): 110-7.

27. Myoui A. Three-dimensionally engineered hydroxyapatite ceramics with interconnected pores as a bone substitute and tissue engineering scaffold. Biomaterials in Orthopedics, ed by Yaszemski MJ, Trantolo DJ, Lewandrowski K, et al, Marcel Dekker, New York, 2003; 287-300.

28. Sakamoto M, Nakasu M, Matsumoto T, Okihana H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res A. 2007; 82(1): 238-42.

29. Ogose A, Kondo N, Umezu H, Hotta T, Kawashima H, Tokunaga K, Ito T, Kubo N, Hoshino M, Gu W, Endo N. Histological assessment in grafts of highly purified beta- tricalcium phosphate (OSferion) in human bones. Biomaterials. 2006; 27(8): 1542-9.

30. Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2004; 70(4): 542-9.

31. 鎌倉慎治 . 人工骨 . 人工臓器 . 2018; 47 巻(3 号 ): 180-4.

32. Doi Y ST, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res. 1998; 39: 603-10.

33. Tsuchiya A, Sotome S, Asou Y, Kikuchi M, Koyama Y, Ogawa T, Tanaka J, Shinomiya K. Effects of pore size and implant volume of porous hydroxyapatite/collagen (HAp/Col) on bone formation in a rabbit bone defect model. J Med Dent Sci. 2008; 55(1): 91-9.

34. Sotome S, Ae K, Okawa A, Ishizuki M, Morioka H, Matsumoto S, Nakamura T, Abe S, Beppu Y, Shinomiya K. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. J Orthop Sci. 2016; 21(3): 373-80.

35. Garcia-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015; 81: 112-21.

36. Brown WE SJ, Frazier AW,Lehr JR. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature. 1962; 196(4859): 1050-5.

37. Iijima M, Tohda H, Suzuki H, Yanagisawa T, Moriwaki Y. Effects of F- on apatite- octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation. Calcif Tissue Int. 1992; 50(4): 357-61.

38. Anada T, Kumagai T, Honda Y, Masuda T, Kamijo R, Kamakura S, Yoshihara N, Kuriyagawa T, Shimauchi H, Suzuki O. Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A. 2008; 14(6): 965-78.

39. Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M. Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med. 1991; 164(1): 37-50.

40. Kamakura S, Sasano Y, Nakamura M, Suzuki O, Ohki H, Kagayama M, Motegi, K. Initiation of alveolar ridge augmentation in the rat mandible by subperiosteal implantation of octacalcium phosphate. Arch Oral Biol. 1996; 41(11): 1029-38.

41. Sasano Y, Kamakura S, Homma H, Suzuki O, Mizoguchi I, Kagayama M. Implanted octacalcium phosphate (OCP) stimulates osteogenesis by osteoblastic cells and/or committed osteoprogenitors in rat calvarial periosteum. Anat Rec. 1999; 256(1): 1-6.

42. Barrere F, van der Valk CM, Dalmeijer RA, van Blitterswijk CA, de Groot K, Layrolle P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A. 2003; 64(2): 378-87.

43. Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, de Groot K. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials. 2005; 26(1): 23-36.

44. Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006; 27(14): 2874-81.

45. Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990; 1(1): 60-8.

46. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis. 2001; 7(4): 259-65.

47. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca- deficient hydroxyapatite. Biomaterials. 2006; 27(13): 2671-81.

48. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate (OCP) in rat skull defects enhances bone repair. J Dent Res. 1999; 78(11): 1682-7.

49. Kamakura S, Sasano Y, Homma-Ohki H, Nakamura M, Suzuki O, Kagayama M, Motegi, K. Multinucleated giant cells recruited by implantation of octacalcium phosphate (OCP) in rat bone marrow share ultrastructural characteristics with osteoclasts. J Electron Microsc (Tokyo). 1997; 46(5): 397-403.

50. Kamakura S, Sasano Y, Shimizu T, Hatori K, Suzuki O, Kagayama M, Mogegi K. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. J Biomed Mater Res. 2002; 59(1): 29-34.

51. Kamakura S, Nakajo S, Suzuki O, Sasano Y. New scaffold for recombinant human bone morphogenetic protein-2. J Biomed Mater Res A. 2004; 71(2): 299-307.

52. Kamakura S, Sasaki K, Honda Y, Anada T, Suzuki O. Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. J Biomed Mater Res B Appl Biomater. 2006; 79(2): 210-7.

53. 鎌倉慎治 . 「東北大」発の骨再生材料の開発を目指して . 東北医誌. 2009; 121(2): 157-9.

54. Matsui A, Anada T, Masuda T, Honda Y, Miyatake N, Kawai T, Suzuki O, Kamakura S, Echigo S. Mechanical stress-related calvaria bone augmentation by onlayed octacalcium phosphate-collagen implant. Tissue Eng Part A. 2010; 16(1): 139-51.

55. Suzuki Y, Kamakura S, Honda Y, Anada T, Hatori K, Sasaki K, Suzuki O. Appositional bone formation by OCP-collagen composite. J Dent Res. 2009; 88(12): 1107-12.

56. Kamakura S, Sasaki K, Honda Y, Anada T, Matsui K, Echigo S, Suzuki O. Dehydrothermal treatment of collagen influences on bone regeneration by octacalcium phosphate (OCP) collagen composites. J Tissue Eng Regen Med. 2007; 1(6): 450-6.

57. Tanuma Y, Anada T, Honda Y, Kawai T, Kamakura S, Echigo S, Suzuki O. Granule size-dependent bone regenerative capacity of octacalcium phosphate in collagen matrix. Tissue Eng Part A. 2012; 18(5-6): 546-57.

58. Kawai T, Anada T, Honda Y, Kamakura S, Matsui K, Matsui A, Sasaki K, Morimoto S, Echigo S, Suzuki S. Synthetic octacalcium phosphate augments bone regeneration correlated with its content in collagen scaffold. Tissue Eng Part A. 2009; 15(1): 23-32.

59. Kamakura S, Sasaki K, Homma T, Honda Y, Anada T, Echigo S, Suzuki O. The primacy of octacalcium phosphate collagen composites in bone regeneration. J Biomed Mater Res A. 2007; 83(3): 725-33.

60. Kouketsu A, Matsui K, Kawai T, Ezoe Y, Yanagisawa T, Yasuda A, Takahashi T, Kamakura S. Octacalcium phosphate collagen composite stimulates the expression and activity of osteogenic factors to promote bone regeneration. J Tissue Eng Regen Med. 2019; 14(1): 99-107.

61. Kawai T, Anada T, Masuda T, Honda Y, Sakai Y, Kato Y, Kamakura S, Echigo S, Suzuki O. The effect of synthetic octacalcium phosphate in a collagen scaffold on the osteogenicity of mesenchymal stem cells. Eur Cell Mater. 2011; 22: 124-36.

62. Kawai T, Matsui K, Iibuchi S, Anada T, Honda Y, Sasaki K, Kamakura S, Suzuki O, Echigo S. Reconstruction of critical-sized bone defect in dog skull by octacalcium phosphate combined with collagen. Clin Implant Dent Relat Res. 2011; 13(2): 112-23.

63. Tanuma Y, Matsui K, Kawai T, Matsui A, Suzuki O, Kamakura S, Echigo S. Comparison of bone regeneration between octacalcium phosphate/collagen composite and beta-tricalcium phosphate in canine calvarial defect. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013; 115(1): 9-17.

64. Iibuchi S, Matsui K, Kawai T, Sasaki K, Suzuki O, Kamakura S, Echigo S. Octacalcium phosphate (OCP) collagen composites enhance bone healing in a dog tooth extraction socket model. Int J Oral Maxillofac Surg. 2010; 39(2): 161-8.

65. Matsui A, Matsui K, Handa T, Tanuma Y, Miura K, Kato Y, Kawai T, Suzuki O, Kamakura S, Echigo S. The regenerated bone quality by implantation of octacalcium phosphate collagen composites in a canine alveolar cleft model. Cleft Palate Craniofac J. 2014; 51(4): 420-30.

66. Matsui K, Matsui A, Handa T, Kawai T, Suzuki O, Kamakura S, Echigo S. Bone regeneration by octacalcium phosphate collagen composites in a dog alveolar cleft model. Int J Oral Maxillofac Surg. 2010; 39(12): 1218-25.

67. Kawai T, Echigo S, Matsui K, Tanuma Y, Takahashi T, Suzuki O, Kamakura S. First clinical application of octacalcium phosphate collagen composite in human bone defect. Tissue Eng Part A. 2014; 20(7-8): 1336-41.

68. Kawai T, Suzuki O, Matsui K, Tanuma Y, Takahashi T, Kamakura S. Octacalcium phosphate collagen composite facilitates bone regeneration of large mandibular bone defect in humans. J Tissue Eng Regen Med. 2017; 11(5): 1641-7.

69. Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. 1972. J Prosthet Dent. 2003; 89(5): 427-35.

70. Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants. 2004; 19 Suppl: 43-61.

71. 片桐 捗 . 歯・歯周組織の再生 . 中内啓光 編 . 幹細胞研究と再生医療 : 南山堂; 2013. p. 223-30.

72. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982; 9(4): 290-6.

73. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989; 4(1): 19-25.

74. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989(238): 249-81.

75. Howell TH, Fiorellini J, Jones A, Alder M, Nummikoski P, Lazaro M, Lilly L, Cochran D. A feasibility study evauating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. Int J Periodontics Restorative Dent. 1997; 17(2): 124-39.

76. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011; 11(6): 471-91.

77. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998; 85(6): 638-46.

78. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res. 2003; 5(3): 154-60.

79. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants. 2009; 24 Suppl: 218-36.

80. Fujita R, Yokoyama A, Kawasaki T, Kohgo T. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. J Oral Maxillofac Surg. 2003; 61(9): 1045-53.

81. Ozawa Y, Kubota T, Yamamoto T, Tsukune N, Koshi R, Nishida T, Asano M, Sato S. Comparison of the bone augmentation ability of absorbable collagen sponge with that of hydroxyapatite/collagen composite. J Oral Sci. 2018; 60(4): 514-8.

82. Akino N, Tachikawa N, Miyahara T, Ikumi R, Kasugai S. Vertical ridge augmentation using a porous composite of uncalcined hydroxyapatite and poly-DL-lactide enriched with types 1 and 3 collagen. Int J Implant Dent. 2019; 5(1): 16.

83. Park JC, So SS, Jung IH, Yun JH, Choi SH, Cho KS, Kim CS. Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res. 2011; 46(6): 682-90.

84. Oginuma T, Sato S, Udagawa A, Saito Y, Arai Y, Ito K. Autogenous bone with or without hydroxyapatite bone substitute augmentation in rat calvarium within a plastic cap. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114(5 Suppl): S107-13.

85. Zigdon-Giladi H, Bick T, Morgan EF, Lewinson D, Machtei EE. Peripheral blood- derived endothelial progenitor cells enhance vertical bone formation. Clin Implant Dent Relat Res. 2015; 17(1): 83-92.

86. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990; 11(3): 181-8.

87. Kajii F, Iwai A, Tanaka H, Matsui K, Kawai T, Kamakura S. Single-dose local administration of teriparatide with a octacalcium phosphate collagen composite enhances bone regeneration in a rodent critical-sized calvarial defect. J Biomed Mater Res B Appl Biomater. 2018; 106(5): 1851-7.

88. Kaneko H, Kamiie J, Kawakami H, Anada T, Honda Y, Shiraishi N, Kamakura S, Terasaki T, Simauchi H, Suzuki O. Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals. Anal Biochem. 2011; 418(2): 276-85.

89. Iwai A, Kajii F, Tanaka H, Sasaki K, Matsui K, Kawai T, Kamakura S. Bone regeneration by freeze-dried composite of octacalcium phosphate collagen and teriparatide. Oral Dis. 2018; 24(8): 1514-21.

90. Miettinen H, Makela EA, Vainio J, Rokkanen P, Tormala P. The effect of an intramedullary self-reinforced poly-L-lactide (SR-PLLA) implant on growing bone with special reference to fixation properties. An experimental study on growing rabbits. J Biomater Sci Polym Ed. 1992; 3(6): 443-50.

91. Wang JS, Aspenberg P. Basic fibroblast growth factor promotes bone ingrowth in porous hydroxyapatite. Clin Orthop Relat Res. 1996(333): 252-60.

92. Niall HD, Sauer RT, Jacobs JW, Keutmann HT, Segre GV, O'Riordan JL, Aurbach GD, Potts JT. The amino-acid sequence of the amino-terminal 37 residues of human parathyroid hormone. Proc Natl Acad Sci U S A. 1974; 71(2): 384-8.

93. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999; 104(4): 439-46.

94. Tam CS, Heersche JN, Murray TM, Parsons JA. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology. 1982; 110(2): 506-12.

95. Jacobson JA, Yanoso-Scholl L, Reynolds DG, Dadali T, Bradica G, Bukata S, Puzas EJ, Zuscik MJ, Rosier R, O'Keefe RJ, Schwarz EM, Awad HA. Teriparatide therapy and beta-tricalcium phosphate enhance scaffold reconstruction of mouse femoral defects. Tissue Eng Part A. 2011; 17(3-4): 389-98.

96. Pensak M, Hong SH, Dukas A, Bayron J, Tinsley B, Jain A, Tang A, Rowe D, Lieberman JR. Combination therapy with PTH and DBM cannot heal a critical sized murine femoral defect. J Orthop Res. 2015; 33(8): 1242-9.

97. Rowshan HH, Parham MA, Baur DA, McEntee RD, Cauley E, Carriere DT, Wood JC, Demsar WJ, Pizarro JP. Effect of intermittent systemic administration of recombinant parathyroid hormone (1-34) on mandibular fracture healing in rats. J Oral Maxillofac Surg. 2010; 68(2): 260-7.

98. Stancoven BW, Lee J, Dixon DR, McPherson JC, 3rd, Bisch FC, Wikesjo UM, Susin C. Effect of bone morphogenetic protein-2, demineralized bone matrix and systemic parathyroid hormone (1-34) on local bone formation in a rat calvaria critical-size defect model. J Periodontal Res. 2013; 48(2): 243-51.

99. Yun JI, Wikesjo UM, Borke JL, Bisch FC, Lewis JE, Herold RW, Swiec GD, Wood JC, McPherson JC.,3rd. Effect of systemic parathyroid hormone (1-34) and a beta- tricalcium phosphate biomaterial on local bone formation in a critical-size rat calvarial defect model. J Clin Periodontol. 2010; 37(5): 419-26.

100 .Chan HL, McCauley LK. Parathyroid hormone applications in the craniofacial skeleton. J Dent Res. 2013; 92(1): 18-25.

101 .Morimoto T, Kaito T, Kashii M, Matsuo Y, Sugiura T, Iwasaki M, Yoshikawa H. Effect of Intermittent Administration of Teriparatide (Parathyroid Hormone 1-34) on Bone Morphogenetic Protein-Induced Bone Formation in a Rat Model of Spinal Fusion. J Bone Joint Surg Am. 2014; 96(13): e107.

102 .Sasano Y, Kamakura S, Homma H, Suzuki O, Mizoguchi I, Kagayama M. Implanted octacalcium phosphate (OCP) stimulates osteogenesis by osteoblastic cells and/or committed osteoprogenitors in rat calvarial periosteum. Anat Rec. 1999; 256(1): 1-6.

103 .Miettinen H, Makela EA, Vainio J, Rokkanen P, Tormala P. The effect of an intramedullary biodegradable self-reinforced polyglycolic acid implant on tubular bone. An experimental study on growing dogs. J Biomater Sci Polym Ed. 1992; 3(6): 435-42.

104 .Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999; 44(4): 446-55.

105 .Khayyatan F, Nemati S, Kiani S, Hojjati Emami S, Baharvand H. Behaviour of human induced pluripotent stem cell-derived neural progenitors on collagen scaffolds varied in freezing temperature and laminin concentration. Cell J. 2014; 16(1): 53-62.

106 .川添直輝,陳国平 . 足場材料の構造制御と複合化技術 . 辻賢司 編 . 再生医療用足場材料の開発と市場 : 株式会社シーエムシー出版; 2016. p. 14-23.

107 .Griffey S, Schwade ND, Wright CG. Particulate dermal matrix as an injectable soft tissue replacement material. J Biomed Mater Res. 2001; 58(1): 10-5.

108 .Thein-Han W, Xu HH. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng Part A. 2011; 17(23- 24): 2943-54.

109 .Pfeiffer E, Vickers SM, Frank E, Grodzinsky AJ, Spector M. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Osteoarthritis Cartilage. 2008; 16(10): 1237-44.

110 .Evans CE, Mylchreest S, Andrew JG. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK. BMC Musculoskelet Disord. 2006; 7:21.

111 .Goodman SB, Huie P, Song Y, Schurman D, Maloney W, Woolson S, Sibley R Cellular profile and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br. 1998; 80(3): 531-9.

112 .遠藤一彦,松田浩一,安彦善裕,大野弘機,賀来亭 . 医用金属材料の腐食と生体反応 . Zairyou-to-Kankyou. 1998; 46: 682-90.

113 .Arnoczky SP, DiCarlo EF, O'Brien SJ, Warren RF. Cellular repopulation of deep- frozen meniscal autografts: an experimental study in the dog. Arthroscopy. 1992; 8(4): 428-36.

114 .Masuda T, Kawai T, Anada T, Kamakura S, Suzuki O. Quality of regenerated bone enhanced by implantation of octacalcium phosphate-collagen composite. Tissue Eng Part C Methods. 2010; 16(3): 471-8.

115 .Pinholt EM, Ruyter IE, Haanaes HR, Bang G. Chemical, physical, and histologic studies on four commercial apatites used for alveolar ridge augmentation. J Oral Maxillofac Surg. 1992;50(8): 859-67; discussion 67-8.

116 .Wada Y, Amiel M, Harwood F, Moriya H, Amiel D. Architectural remodeling in deep frozen meniscal allografts after total meniscectomy. Arthroscopy. 1998; 14(3): 250-7.

117 .Koseki T, Kitabatake N, Doi E. Freezing denaturation of ovalbumin at acid pH. J Biochem. 1990; 107(3): 389-94.

118 .Lee SL. Optimal conditions for long term storage of native collagens. Coll Relat Res. 1983; 3(4): 305-15.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る