リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anaerobic benzene degradation pathway of Azoarcus sp. DN11」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anaerobic benzene degradation pathway of Azoarcus sp. DN11

デバナデラ アレン アルシアガ 東京大学 DOI:10.15083/0002006876

2023.03.24

概要





















デバナデラ

アレン

アルシアガ

ベンゼンは土壌や地下水でよく検出される汚染物質であり、発がん性を有するために大
きな健康問題を引き起こす場合も多く、効率的汚染浄化が求められている。細菌の有するオ
キシゲナーゼによる好気的ベンゼン分解は古くから知られているが、汚染環境が嫌気的な
ことも多く、近年、ベンゼンの嫌気分解菌の単離や嫌気的分解経路の解明が試みられてきた。
それらの研究では、推定嫌気的ベンゼン分解経路の初発反応として、トルエンへのメチル化、
安息香酸へのカルボキシル化、フェノールへのヒドロキシル化の 3 つが提唱されていた。

Azoarcus sp. DN11 株は脱窒能を有する硝酸還元菌で、好気と嫌気の両条件下でベンゼ
ン、トルエン、安息香酸等を分解できる。DN11 株はベンゼン汚染のバイオレメディエーシ
ョンへの適用が期待されているが、ベンゼン分解経路は未解明で、分解に関わる酵素・遺伝
子の情報も不十分であった。このような背景から、本研究はゲノム解析と同位体標識化合物
を使った代謝能評価を通して、DN11 株のベンゼン代謝系を明らかにしようとしたもので、
序論と今後の展望を含めて全 5 章で構成されている。
地下水汚染の現状とベンゼンの好気的、嫌気的分解系をまとめた序論に引き続き、第 2 章
では、DN11 の完全長ゲノムシークエンス解析とゲノム配列データの分析により、代謝系酵
素遺伝子群の存在について調べている。4,956,835 bp の完全長ゲノムを明らかにした後、
一般的なアノテーションの結果において検出された分解系遺伝子を、さらに BLAST 等で詳
細に調べることで、初発反応の酵素遺伝子は未解明なものの、上記の 3 つの嫌気的ベンゼン
分解経路の 2 段階目以降の代謝系が全て存在しうることが示された。また、ベンゼンの好気
的分解に関与しうる推定モノオキシゲナーゼとジオキシゲナーゼも発見されている。
続いて第 3 章では、[13C]で標識したベンゼンの代謝中間体を GC-MS で分析することで、
嫌気環境下で[13C]ベンゼンが[13C]フェノールに変換されていることを示している。合わせ
て、[13C]トルエンや[13C]安息香酸は検出されず、DN11 株がフェノールへのヒドロキシル化
反応を経由してベンゼンを分解していることを明らかにしている。さらに、[18O]標識した水
を与えた条件で DN11 株が嫌気的にベンゼンを分解しても、[18O]フェノールは検出されず、
水酸基の酸素原子は水由来ではないことを示唆するデータも得ている。
第 4 章では、RNA-Seq 解析を用いて、ベンゼンと安息香酸(対照)を唯一の基質として嫌
気的に生育させた DN11 株細胞のトランスクリプトーム比較を行っている。その結果、DN11
の嫌気的フェノール分解経路の遺伝子は、ベンゼンを分解する際に安息香酸で生育する場

合より多く発現することが示された。嫌気条件下でトルエン、あるいは安息香酸を介してベ
ンゼンが分解する経路に関与する遺伝子の発現量は、ベンゼンで成長した細胞では低く、第
3 章で得られたフェノールを介する経路が働くことを支持する結果と言える。一方、嫌気的
なベンゼン分解を行っている細胞で、酸素を使ってベンゼンを代謝する推定ベンゼンモノ
オキシゲナーゼをコードする遺伝子が高発現していることも示している。
近年、いくつかの菌株で一酸化窒素ジスムターゼ(Nod)が脱窒経路により生産された 2
分子の一酸化窒素から酸素を遊離させることが報告された。硝酸を制限した培地ではベン
ゼン分解が検出できないことから、Nod による酸素発生が起こる可能性があるが、現段階で
は、DN11 株ゲノム中に当該遺伝子は見いだされていない。以上のことから、細胞で硝酸に
由来して生成された酸素あるいは、培養系に微量に混入した酸素がベンゼンモノオキシゲ
ナーゼによってフェノール生成に利用された後、嫌気的フェノール代謝系で完全分解され
る可能性が高いことを考察している。
第 5 章では、上記の結果をまとめて総合的な考察を加えると共に、今後の研究の展望につ
いて述べている。
以上、本博士論文は、ゲノムワイドな解析と緻密な代謝解析を通じて、DN11 がフェノ
ールを介する経路で嫌気的にベンゼンを分解することを示したもので、得られた結果は、
DN11 株をベンゼン汚染土壌などのバイオレメディエーションに利用するにあたっての分解
能の評価手法の開発や高分解能細胞の培養条件の決定に重要な情報を与えることが期待で
きる。また、中間代謝物としてのフェノールの発見のみならず、Nod による酸素発生の可能
性など新規な代謝反応の関与の可能性を示唆するなど、嫌気条件下でのベンゼン代謝系の
全貌解明のために大きな成果を上げたと評価できる。これらの研究成果は、学術上応用上寄
与するところが少なくない。よって、審査委員一同は本論文が博士(農学)の学位論文とし
て価値あるものと認めた。

この論文で使われている画像

参考文献

Abu Laban, N., Selesi, D., Jobelius, C., & Meckenstock, R. U. (2009). Anaerobic benzene

degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiology Ecology, 68(3),

300–311. https://doi.org/10.1111/j.1574-6941.2009.00672.x

Abu Laban, N., Selesi, D., Rattei, T., Tischler, P., & Meckenstock, R. U. (2010). Identification

of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing

enrichment

culture.

Environmental

Microbiology.

https://doi.org/10.1111/j.1462-

2920.2010.02248.x

Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J., & Coates, J. D. (2001).

Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two

novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic

position.

International

Journal

of

Systematic

and

Evolutionary

Microbiology.

https://doi.org/10.1099/00207713-51-2-527

Aklujkar, M., Krushkal, J., Dibartolo, G., Lapidus, A., Land, M. L., & Lovley, D. R. (2009).

The genome sequence of Geobacter metallireducens: Features of metabolism, physiology and

regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiology, 9, 1–22.

https://doi.org/10.1186/1471-2180-9-109

Anderson, R. T., Rooney-Varga, J. N., Gaw, C. V., & Lovley, D. R. (1998). Anaerobic benzene

oxidation in the Fe(III) reduction zone of petroleum- contaminated aquifers. Environmental

Science and Technology. https://doi.org/10.1021/es9704949

Atashgahi, S., Hornung, B., Van Der Waals, M. J., Da Rocha, U. N., Hugenholtz, F., Nijsse,

B., Molenaar, D., Van Spanning, R., Stams, A. J. M., Gerritse, J., & Smidt, H. (2018). A

benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic

benzene degradation pathways. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598018-22617-x

Ball, H. A., Johnson, H. A., Reinhard, M., & Spormann, A. M. (1996). Initial reactions in

anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. Journal of

Bacteriology. https://doi.org/10.1128/jb.178.19.5755-5761.1996

70

Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V., & Chippaux, M. (1990). Nitrate reductases

of Escherichia coli: Sequence of the second nitrate reductase and comparison with that

encoded

by

the

narGHJI

operon.

MGG

Molecular

General

Genetics.

https://doi.org/10.1007/BF00283030

Bonaventura, C., & Johnson, F. M. (1997). Healthy environments for healthy people:

Bioremediation

today

and

tomorrow.

In

Environmental

Health

Perspectives.

https://doi.org/10.1289/ehp.97105s15

Botton, S., & Parsons, J. R. (2007). Degradation of BTX by dissimilatory iron-reducing cultures.

Biodegradation, 18(3), 371–381. https://doi.org/10.1007/s10532-006-9071-9

Breese, K., & Fuchs, G. (1998). 4-hydroxybenzoyl-CoA reductase (dehydroxylating) from the

denitrifying bacterium Thauera aromatica - Prosthetic groups, electron donor, and genes of a

member of the molybdenum-flavin-iron-sulfur proteins. European Journal of Biochemistry.

https://doi.org/10.1046/j.1432-1327.1998.2510916.x

Butler, J. E., Young, N. D., & Lovley, D. R. (2010). Evolution of electron transfer out of the cell:

Comparative

genomics

of

six

Geobacter

genomes.

BMC

Genomics.

https://doi.org/10.1186/1471-2164-11-40

Caldwell, M. E., & Suflita, J. M. (2000). Detection of phenol and benzoate as intermediates of

anaerobic benzene biodegradation under different terminal electron-accepting conditions.

Environmental

Science

and

Technology,

34(7),

1216–1220.

https://doi.org/10.1021/es990849j

Canzano, S., Capasso, S., Di Natale, M., Erto, A., Iovino, P., & Musmarra, D. (2014).

Remediation of groundwater polluted by aromatic compounds by means of adsorption.

Sustainability (Switzerland). https://doi.org/10.3390/su6084807

Carmona, M., Zamarro, M. T., Blázquez, B., Durante-Rodríguez, G., Juárez, J. F.,

Valderrama, J. A., Barragán, M. J. L., García, J. L., & Díaz, E. (2009). Anaerobic

Catabolism of Aromatic Compounds: a Genetic and Genomic View. Microbiology and

Molecular Biology Reviews. https://doi.org/10.1128/mmbr.00021-08

Chakraborty, R., & Coates, J. D. (2005). Hydroxylation and carboxylation - Two crucial steps of

71

anaerobic benzene degradation by Dechloromonas strain RCB. Applied and Environmental

Microbiology, 71(9), 5427–5432. https://doi.org/10.1128/AEM.71.9.5427-5432.2005

Chakraborty, R., O’Connor, S. M., Chan, E., & Coates, J. D. (2005). Anaerobic degradation of

benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB.

Applied

and

Environmental

Microbiology.

https://doi.org/10.1128/AEM.71.12.8649-

8655.2005

Chen, J., Di, Z., Shi, J., Shu, Y., Wan, Z., Song, L., & Zhang, W. (2020). Marine oil spill

pollution causes and governance: A case study of Sanchi tanker collision and explosion.

Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.122978

Coates, J. B., Chakraborty, R., Lack, J. G., O’Connor, S. M., Cole, K. A., Bender, K. S., &

Achenbach, L. A. (2001). Anaerobic benzene oxidation coupled to nitrate reduction in pure

culture by two strains of Dechloromonas. Nature. https://doi.org/10.1038/35082545

Coates, J. D., Anderson, R. T., & Lovley, D. R. (1996). Oxidation of polycyclic aromatic

hydrocarbons under sulfate-reducing conditions. Applied and Environmental Microbiology.

https://doi.org/10.1128/aem.62.3.1099-1101.1996

Coates, J. D., Chakraborty, R., & McInerney, M. J. (2002). Anaerobic benzene biodegradation

- A new era. In Research in Microbiology. https://doi.org/10.1016/S0923-2508(02)01378-5

Devanadera, A., Vejarano, F., Zhai, Y., Suzuki-Minakuchi, C., Ohtsubo, Y., Tsuda, M., Kasai,

Y., Takahata, Y., Okada, K., & Nojiri, H. (2019). Complete Genome Sequence of an

Anaerobic Benzene- Degrading Bacterium, Azoarcus sp. Strain DN11. February, 17–18.

Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M.,

Schreiber, F., Dutilh, B. E., Zedelius, J., De Beer, D., Gloerich, J., Wessels, H. J. C. T.,

Van Alen, T., Luesken, F., Wu, M. L., Van De Pas-Schoonen, K. T., Op Den Camp, H. J.

M., Janssen-Megens, E. M., Francoijs, K. J., … Strous, M. (2010). Nitrite-driven anaerobic

methane oxidation by oxygenic bacteria. Nature. https://doi.org/10.1038/nature08883

Ettwig, K. F., Speth, D. R., Reimann, J., Wu, M. L., Jetten, M. S. M., & Keltjens, J. T. (2012).

Bacterial oxygen production in the dark. Frontiers in Microbiology, 3(AUG), 1–8.

https://doi.org/10.3389/fmicb.2012.00273

72

Evans, P. J., Mang, D. T., Kwang Shin Kim, & Young, L. Y. (1991). Anaerobic degradation of

toluene by a denitrifying bacterium. Applied and Environmental Microbiology.

https://doi.org/10.1128/aem.57.4.1139-1145.1991

Flesher, J. and Myers, S. (1991). Methyl-substitution of benzene and toluene in preparations of

human bone marrow. Life Sciences. https://doi.org/10.1016/0024-3205(91)90100-P

Foght, J. (2008). Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects.

Journal

of

Molecular

Microbiology

and

Biotechnology,

15(2–3),

93–120.

https://doi.org/10.1159/000121324

Fries, M. R., Zhou, J., Chee-Sanford, J., & Tiedje, J. M. (1994). Isolation, characterization, and

distribution of denitrifying toluene degraders from a variety of habitats. Applied and

Environmental Microbiology. https://doi.org/10.1128/aem.60.8.2802-2810.1994

Fritsche, W., & Hofrichter, M. (2008). Aerobic Degradation by Microorganisms. In

Biotechnology:

Second,

Completely

Revised

Edition.

https://doi.org/10.1002/9783527620999.ch6m

Geary, P. J., Mason, J. R., & Joannou, C. L. (1990). Benzene dioxygenase from Pseudomonas

putida ML2 (NCIB 12190). Methods in Enzymology. https://doi.org/10.1016/00766879(90)88012-Y

Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental

biotechnology. In Current Opinion in Biotechnology. https://doi.org/10.1016/S09581669(00)00090-2

Grbic-Galic, D., & Vogel, T. M. (1987). Transformation of toluene and benzene by mixed

methanogenic cultures. Applied and Environmental Microbiology, 53(2), 254–260.

https://doi.org/10.1128/aem.53.2.254-260.1987

Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Roßnagel, P., Burggraf, S., Huber, H., &

Stetter, K. O. (1996). Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic

archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Archives of Microbiology.

https://doi.org/10.1007/s002030050388

73

Heiss, B., & Frunzke Zumft, K. W. G. (1989). Formation of the N-N bond from nitric oxide by a

membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas

stutzeri. Journal of Bacteriology. https://doi.org/10.1128/jb.171.6.3288-3297.1989

Hoeren, F. U., Berks, B. C., Ferguson, S. J., & McCarthy, J. E. G. (1993). Sequence and

expression of the gene encoding the respiratory nitrous‐oxide reductase from Paracoccus

denitrificans New and conserved structural and regulatory motifs. European Journal of

Biochemistry. https://doi.org/10.1111/j.1432-1033.1993.tb18350.x

Holmes, D. E., Risso, C., Smith, J. A., & Lovley, D. R. (2011). Anaerobic oxidation of benzene

by the hyperthermophilic archaeon Ferroglobus placidus. Applied and Environmental

Microbiology, 77(17), 5926–5933. https://doi.org/10.1128/AEM.05452-11

Holmes, D. E., Risso, C., Smith, J. A., & Lovley, D. R. (2012). Genome-scale analysis of

anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus

placidus. ISME Journal. https://doi.org/10.1038/ismej.2011.88

Hu, Q. Q., Zhou, Z. C., Liu, Y. F., Zhou, L., Mbadinga, S. M., Liu, J. F., Yang, S. Z., Gu, J.

D., & Mu, B. Z. (2019). High microbial diversity of the nitric oxide dismutation reaction

revealed by PCR amplification and analysis of the nod gene. International Biodeterioration

and Biodegradation. https://doi.org/10.1016/j.ibiod.2019.05.025

Jindrová, E., Chocová, M., Demnerová, K., & Brenner, V. (2002). Bacterial Aerobic

Degradation of Benzene, Toluene, Ethylbenzene and Xylene. Folia Microbiologica, 47(2),

83–93. https://doi.org/10.1007/BF02817664

Kasai, Y., Kodama, Y., Takahata, Y., Hoaki, T., & Watanabe, K. (2007). Degradative capacities

and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11.

Environmental

Science

Technology,

41(17),

6222–6227.

http://www.ncbi.nlm.nih.gov/pubmed/17937306

Kasai, Y., Takahata, Y., Hoaki, T., & Watanabe, K. (2005). Physiological and molecular

characterization of a microbial community established in unsaturated, petroleumcontaminated

soil.

Environmental

Microbiology.

https://doi.org/10.1111/j.1462-

2920.2005.00754.x

74

Kasai, Y., Takahata, Y., Manefield, M., & Watanabe, K. (2006). RNA-based stable isotope

probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated

groundwater.

Applied

and

Environmental

Microbiology,

72(5),

3586–3592.

https://doi.org/10.1128/AEM.72.5.3586-3592.2006

Kofoed, V. O., & Rollins, P. B. (2007). Contaminated groundwater sites. Proceedings of the

Symposium on the Application of Geophyics to Engineering and Environmental Problems,

SAGEEP, 1(June), 642–645.

Kunapuli, U., Griebler, C., Beller, H. R., & Meckenstock, R. U. (2008). Identification of

intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment

culture. Environmental Microbiology. https://doi.org/10.1111/j.1462-2920.2008.01588.x

Kunapuli, U., Lueders, T., & Meckenstock, R. U. (2007). The use of stable isotope probing to

identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME

Journal. https://doi.org/10.1038/ismej.2007.73

Leahy, J. G., Batchelor, P. J., & Morcomb, S. M. (2003). Evolution of the soluble diiron

monooxygenases.

In

FEMS

Microbiology

Reviews.

https://doi.org/10.1016/S0168-

6445(03)00023-8

López Barragán, M. J., Carmona, M., Zamarro, M. T., Thiele, B., Boll, M., Fuchs, G., García,

J. L., & Díaz, E. (2004). The bzd gene cluster, coding for anaerobic benzoate catabolism, in

Azoarcus

sp.

strain

CIB.

Journal

of

Bacteriology,

186(17),

5762–5774.

https://doi.org/10.1128/JB.186.17.5762-5774.2004

Lovley, D. R., Woodward, J. C., & Chapelle, F. H. (1996). Rapid anaerobic benzene oxidation

with a variety of chelated Fe(III) forms. Applied and Environmental Microbiology.

https://doi.org/10.1128/aem.62.1.288-291.1996

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: An

automatic genome annotation and pathway reconstruction server. Nucleic Acids Research.

https://doi.org/10.1093/nar/gkm321

Ogata, H., Goto, S., Fujibuchi, W., & Kanehisa, M. (1998). Computation with the KEGG

75

pathway database. BioSystems. https://doi.org/10.1016/S0303-2647(98)00017-3

Ohtsubo, Y., Kishida, K., Sato, T., Tabata, M., Kawasumi, T., Ogura, Y., Hayashi, T., Tsuda,

M., & Nagata, Y. (2014). Complete Genome Sequence of Pseudomonas sp. Strain TKP,

Isolated from a -Hexachlorocyclohexane-Degrading Mixed Culture. Genome Announcements.

https://doi.org/10.1128/genomea.01241-13

Ohtsubo, Yoshiyuki, Ikeda-Ohtsubo, W., Nagata, Y., & Tsuda, M. (2008). GenomeMatcher: A

graphical user interface for DNA sequence comparison. BMC Bioinformatics, 9(vi), 1–9.

https://doi.org/10.1186/1471-2105-9-376

Ohtsubo, Yoshiyuki, Maruyama, F., Mitsui, H., Nagata, Y., & Tsuda, M. (2012). Complete

genome sequence of acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader.

Journal of Bacteriology, 194(24), 6970–6971. https://doi.org/10.1128/JB.01848-12

Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., & Reinhardt, R. (2005).

The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain

EbN1. Archives of Microbiology. https://doi.org/10.1007/s00203-004-0742-9

Rabus, R., & Widdel, F. (1995). Anaerobic degradation of ethylbenzene and other aromatic

hydrocarbons

by

new

denitrifying

bacteria.

Archives

of

Microbiology.

https://doi.org/10.1007/BF00381782

Rees, E., Siddiqui, R. A., Köster, F., Schneider, B., & Friedrich, B. (1997). Structural gene (nirS)

for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16. Applied and

Environmental Microbiology. https://doi.org/10.1128/aem.63.2.800-802.1997

Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009).

Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: Indications of a

surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation.

BMC Genomics, 10, 1–23. https://doi.org/10.1186/1471-2164-10-351

Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic

pollutants. In Environmental Health Perspectives. https://doi.org/10.1289/ehp.5840

Shingler, V., Powlowski, J., & Marklund, U. (1992). Nucleotide sequence and functional analysis

of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain

76

CF600. Journal of Bacteriology, 174(3), 711–724. https://doi.org/10.1128/jb.174.3.711724.1992

Sugawara, H., Ohyama, A., Mori, H., & Kurokawa, K. (2009). Microbial Genome Annotation

Pipeline (MiGAP) for diverse users. The 20th International Conference on Genome

Informatics (GIW2009), November, S001-1–2. https://doi.org/10.4016/11424.01

Tan, H. M., Tang, H. Y., Joannou, C. L., Abdel-Wahab, N. H., & Mason, J. R. (1993). The

Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in

codon usage and low in G + C content. Gene. https://doi.org/10.1016/0378-1119(93)90343-2

Tatusova, T., Dicuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L.,

Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic

genome

annotation

pipeline.

Nucleic

Acids

Research,

44(14),

6614–6624.

https://doi.org/10.1093/nar/gkw569

Thornton, R. E. (1995). Environmental Health Criteria 150: Benzene. First draft: Prepared by EE

McConnell. World Health Organization, Geneva, 1993 (ISBN 92 4 157150 0.) 156 pp.

Tobler, N. B., Hofstetter, T. B., Straub, K. L., Fontana, D., & Schwarzenbach, R. P. (2007).

Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic

conditions. Environmental Science and Technology. https://doi.org/10.1021/es071128k

Tor, J. M., & Lovley, D. R. (2001). Anaerobic degradation of aromatic compounds coupled to

Fe(III)

reduction

by

Ferroglobus

placidus.

Environmental

Microbiology.

https://doi.org/10.1046/j.1462-2920.2001.00192.x

Tremblay, P. L., Aklujkar, M., Leang, C., Nevin, K. P., & Lovley, D. (2012). A genetic system

for Geobacter metallireducens: Role of the flagellin and pilin in the reduction of Fe(III) oxide.

Environmental Microbiology Reports. https://doi.org/10.1111/j.1758-2229.2011.00305.x

U.S. Energy Information Administration. (2013). World petroleum use sets record high in 2012

despite declines in North America and Europe.

Ulrich, A. C., Beller, H. R., & Edwards, E. A. (2005a). Metabolites detected during

biodegradation of 13C 6-benzene in nitrate-reducing and methanogenic enrichment cultures.

77

Environmental

Science

and

Technology,

39(17),

6681–6691.

https://doi.org/10.1021/es050294u

Ulrich, A. C., Beller, H. R., & Edwards, E. A. (2005b). Metabolites detected during

biodegradation of 13C 6-benzene in nitrate-reducing and methanogenic enrichment cultures.

Environmental Science and Technology. https://doi.org/10.1021/es050294u

Ulrich, A. C., & Edwards, E. A. (2003). Physiological and molecular characterization of anaerobic

benzene-degrading

mixed

cultures.

Environmental

Microbiology.

https://doi.org/10.1046/j.1462-2920.2003.00390.x

Vidali, M. (2001). Bioremediation . An overview *. 73(7), 1163–1172.

Vogel, T. M., & Grbic-Galic, D. (1986). Incorporation of oxygen from water into toluene and

benzene during anaerobic fermentative transformation. Applied and Environmental

Microbiology, 52(1), 200–202. https://doi.org/10.1128/aem.52.1.200-202.1986

Vogt, C., Kleinsteuber, S., & Richnow, H.-H. (2011). Anaerobic benzene degradation by bacteria.

Microbial Biotechnology, 4(6), 710–724. https://doi.org/10.1111/j.1751-7915.2011.00260.x

Watanabe, K., Teramoto, M., & Futamata, H. (1998). Molecular Detection, Isolation, and

Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in

Activated Sludge Molecular Detection , Isolation , and Physiological Characterization of

Functionally Dominant Phenol-Degrading Bact. Applied and Environmental Microbiology,

64(11), 4396–4402.

Weelink, S. A. B., Tan, N. C. G., Ten Broeke, H., Van Den Kieboom, C., Van Doesburg, W.,

Langenhoff, A. A. M., Gerritse, J., Junca, H., & Stams, A. J. M. (2008). Isolation and

characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with

chlorate as the electron acceptor. Applied and Environmental Microbiology, 74(21), 6672–

6681. https://doi.org/10.1128/AEM.00835-08

Weelink, S. A. B., van Eekert, M. H. A., & Stams, A. J. M. (2010). Degradation of BTEX by

anaerobic bacteria: Physiology and application. Reviews in Environmental Science and

Biotechnology, 9(4), 359–385. https://doi.org/10.1007/s11157-010-9219-2

78

Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil-degrading marine

bacteria. In Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2007.04.006

Yen, K. M., Karl, M. R., Blatt, L. M., Simon, M. J., Winter, R. B., Fausset, P. R., Lu, H. S.,

Harcourt, A. A., & Chen, K. K. (1991). Cloning and characterization of a Pseudomonas

mendocina KR1 gene cluster encoding toluene-4-monooxygenase. Journal of Bacteriology.

https://doi.org/10.1128/jb.173.17.5315-5327.1991

Zhang, T., Bain, T. S., Nevin, K. P., Barlett, M. A., & Lovley, D. R. (2012). Anaerobic benzene

oxidation

by

Geobacter

species.

Applied

and

Environmental

Microbiology.

https://doi.org/10.1128/AEM.02469-12

Zhang, T., Tremblay, P.-L., Chaurasia, A. K., Smith, J. A., Bain, T. S., & Lovley, D. R. (2014).

Identification of genes specifically required for the anaerobic metabolism of benzene in

Geobacter

metallireducens.

Frontiers

in

Microbiology,

5(MAY).

https://doi.org/10.3389/fmicb.2014.00245

Zhang, T., Tremblay, P. L., Chaurasia, A. K., Smith, J. A., Bain, T. S., & Lovley, D. R. (2013).

Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Applied and

Environmental Microbiology, 79(24), 7800–7806. https://doi.org/10.1128/AEM.03134-13

Zhou, J., Fries, M. R., Chee-Sanford, J. C., & Tiedje, J. M. (1995). Phylogenetic analyses of a

new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus

tolulyticus

sp.

nov.

International

Journal

of

Systematic

Bacteriology.

https://doi.org/10.1099/00207713-45-3-500

79

Acknowledgments

First of all, I would like to thank my sensei, Dr. Hideaki Nojiri, for accepting me as a

student in his laboratory and for his knowledge and guidance all throughout my research. I thank

Dr. Chiho Suzuki-Minakuchi for her hands-on guidance on my experiments and all the

experimental techniques she has imparted. I also have also received useful suggestions and valuable

advices during my progress reports from Dr. Kazunori Okada. This research would not be possible

if it weren’t for these brilliant professors that I was lucky enough to work with.

I would also like to give appreciation to all the previous and present members of the

Laboratory of Environmental Biochemistry for making my daily laboratory life smooth and

worthwhile.

Lastly, I am forever grateful for my family for the support and unconditional love. None of

this research could have been completed without help of these people.

80

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る