リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structure of SARS-CoV-2 membrane protein essential for virus assembly」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structure of SARS-CoV-2 membrane protein essential for virus assembly

Zhang, Zhikuan Nomura, Norimichi Muramoto, Yukiko Ekimoto, Toru Uemura, Tomoko Liu, Kehong Yui, Moeko Kono, Nozomu Aoki, Junken Ikeguchi, Mitsunori Noda, Takeshi Iwata, So Ohto, Umeharu Shimizu, Toshiyuki 京都大学 DOI:10.1038/s41467-022-32019-3

2022.08.05

概要

The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.

この論文で使われている画像

参考文献

1. Zhou, P. et al. A pneumonia outbreak associated with a new cor- onavirus of probable bat origin. Nature 579, 270–273 (2020).

2. Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

3. Yao, H. et al. Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730–738.e713 (2020).

4. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

5. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

6. Peng, Y. et al. Structures of the SARS‐CoV‐2 nucleocapsid and their perspectives for drug design. EMBO J. 39, e105938 (2020).

7. Zeng, W. et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 527, 618–623 (2020).

8. Mandala, V. S. et al. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27, 1202–1208 (2020).

9. Siu, Y. et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 82, 11318–11330 (2008).

10. Fehr, A. R. & Perlman, S. Coronaviruses: an overview of their repli- cation and pathogenesis. Methods Mol. Biol. 1282, 1–23 (2015).

11. Plescia, C. B. et al. SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles. J. Biol. Chem. 296, 100103 (2021).

12. Swann, H. et al. Minimal system for assembly of SARS-CoV-2 virus like particles. Sci. Rep. 10, 1–5 (2020).

13. Xu, R., Shi, M., Li, J., Song, P. & Li, N. Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Front. Bioeng. Biotechnol. 8, 862 (2020).

14. Kuo, L., Hurst-Hess, K. R., Koetzner, C. A. & Masters, P. S. Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. J. Virol. 90, 4357–4368 (2016).

15. Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane- associated M protein. Nat. Commun. 12, 1–15 (2021).

16. Narayanan, K., Chen, C.-J., Maeda, J. & Makino, S. Nucleocapsid- independent specific viral RNA packaging via viral envelope pro- tein and viral RNA signal. J. Virol. 77, 2922–2927 (2003).

17. Tan, Y. et al. Unification and extensive diversification of M/Orf3- related ion channel proteins in coronaviruses and other nido- viruses. Virus Evol. 7, veab014 (2021).

18. Ouzounis, C. A.A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput. Struct. Biotechnol. J. 18, 4093–4102 (2020).

19. Kern, D. M. et al. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 573–582 (2021).

20. Neuman, B. W. et al. A structural analysis of M protein in cor- onavirus assembly and morphology. J. Struct. Biol. 174, 11–22 (2011).

21. Arndt, A. L., Larson, B. J. & Hogue, B. G. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J. Virol. 84, 11418–11428 (2010).

22. Lu, W. et al. Severe acute respiratory syndrome-associated cor- onavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl Acad. Sci. USA 103, 12540–12545 (2006).

23. Schwarz, S., Wang, K., Yu, W. J., Sun, B. & Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antivir. Res. 90, 64–69 (2011).

24. Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane- associated M protein. Nat. Commun. 12, 502 (2021).

25. Dolan, K. A. et al. Structure of SARS-CoV-2 M protein in lipid nanodiscs. Preprint at bioRxiv (2022).

26. Mannan, A. et al. Genome Sequences of SARS-CoV-2 Sublineage B. 1.617. 2 Strains from 12 Children in Chattogram, Bangladesh. Microbiol. Resour. Announc. 10, e00912–00921 (2021).

27. Wang, K., Xie, S. & Sun, B. Viral proteins function as ion channels. Biochim. Biophys. Acta. 1808, 510–515 (2011).

28. Morales-Perez, C. L., Noviello, C. M.& Hibbs, R. E. Manipulation of subunit stoichiometry in heteromeric membrane proteins. Struc- ture 24, 797–805 (2016).

29. Jaenecke, F. et al. Generation of conformation-specific antibody fragments for crystallization of the multidrug resistance transpor- ter MdfA. Methods Mol. Biol. 1700, 97–109 (2018).

30. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

31. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

32. Zivanov, J., Nakane, T. & Scheres, S. H. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

33. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoS- PARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

34. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM recon- struction. Nat. Methods 17, 1214–1221 (2020).

35. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam- induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

36. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004).

38. Shiimura, Y. et al. Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode. Nat. Com- mun. 11, 1–9 (2020).

39. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

40. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010).

41. DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).

42. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

43. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

44. Lee, J. et al. CHARMM-GUI membrane builder for complex biolo- gical membrane simulations with glycolipids and lipoglycans. J. Chem. Theory Comput. 15, 775–786 (2019).

45. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

46. Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

47. Jo, S., Kim, T. & Im, W. Automated builder and database of protein/ membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007).

48. Jo, S., Lim, J. B., Klauda, J. B.& Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).

49. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

50. Olsson, M. H., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

51. Søndergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

52. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson- Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

53. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulat- ing liquid water. J. Chem. Phys. 79, 926–935 (1983).

54. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly par- allel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

55. Markidis, S., Laure, E., Markidis, S.& Laure, E. Solving software challenges for Exascale. In International Conference on Exascale Applications and Software. (Springer, 2015).

56. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

57. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

58. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

59. MacKerell, A. D. Jr., Feig, M. & Brooks, C. L. 3rd Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 126, 698–699 (2004).

60. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

61. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

62. Liu, H., Fu, H., Chipot, C., Shao, X.& Cai, W. Accuracy of alternate nonpolarizable force fields for the determination of protein-ligand binding affinities dominated by cation-π interactions. J. Chem. Theory Comput. 17, 3908–3915 (2021).

63. Muraoka, T. et al. A synthetic ion channel with anisotropic ligand response. Nat. Commun. 11, 2924 (2020).

64. Hoover, W. G. Canonical dynamics: equilibrium phase-space dis- tributions. Phys. Rev.A 31, 1695 (1985).

65. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

66. Nosé, S. & Klein, M. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

67. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

68. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem.Phys. 103, 8577–8593 (1995).

69. Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る