リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detection of polymeric silicate in the pore water of freshwater lakes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detection of polymeric silicate in the pore water of freshwater lakes

朴 紫暎 Masahito Sugiyama 管原 庄吾 清家 泰 島根大学 DOI:10.1007/s10201-023-00716-7

2023.03.27

概要

Dissolved silicate is an essential nutrient for aquatic organisms, and it is mainly used ...

この論文で使われている画像

参考文献

360

Aston S (1983) Natural water and atmospheric chemistry of silicon. In: Aston S (ed)

361

Silicon geochemistry and biogeochemistry. Academic Press, Massachusetts, US. pp

362

77-100

363

Conley D, Schelske C, Stoermer E (1993) Modification of the biogeochemical cycle of

364

silica with eutrophication. Mar Ecol Prog Ser 101: 179-192. DOI:

365

10.3354/meps101179

366

Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the

367

origin of dissolved silicon transferred from various soil-plant systems towards rivers:

368

a review. Biogeosciences 8: 89-112. DOI: 10.5194/bg-8-89-2011

369

Fischer WW, Knoll AH (2009) An iron shuttle for deepwater silica in Late Archean and

370

early Paleoproterozoic iron formation. Geol Soc Am Bull 121: 222-235. DOI:

371

10.1130/B26328.1

372

Fukusawa H, Koizumi I, Okamura M, Yasuda Y (1995) Last 2,000 year records of

373

eolian dust concentration sea-level and precipitation changes in fine-grained sediment

374

of Lake Suigetsu, Central Japan (in Japanese). Chigaku Zasshi 104: 69-81. DOI:

375

10.5026/jgeography.104.69

376

Furumai H (2012) Monitoring of silicic acid and research implication (in Japanese). In:

377

Furumai H, Sato K, Yamamoto K (eds) Silicic acid, its source and transportation (in

378

Japanese). Gihodo Shuppan, Tokyo, Japan. pp 165-176

379

George S, Steinberg SM, Hodge V (2000) The concentration, apparent molecular weight

380

and chemical reactivity of silica from groundwater in Southern Nevada.

381

Chemosphere 40: 57-63. DOI: 10.1016/s0045-6535(99)00240-4

382

Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K,

17

383

384

385

386

Ehrhardt M (eds) Methods of seawater analysis. 3rd ed. Wiley, pp 159-228

Isshiki K, Sohrin Y, Nakayama E (1991) Form of dissolved silicon in seawater. Mar

Chem 32: 1-8. DOI: 10.1016/0304-4203(91)90021-N

Kawashima M, Hori T, Koyama M, Takamatsu T (1985) Redox cycle of manganese and

387

iron and the circulation of phosphorus in a dredged area of the Southern lake. In:

388

Takamatsu T (ed), Limnological and environmental studies of elements in the

389

sediment of Lake Biwa. The National Institute for Environmental Studies, Japan, pp

390

47-62

391

Krauskopf K, Bird D (1995) Sedimentation and Diagenesis: Inorganic Geochemistry.

392

In: Krauskopf K, Bird D (eds) Introduction to Geochemistry 3rd ed. McGraw-Hill,

393

New York, US. pp 356-384

394

Kusunoki K, Sakata M (2018) Analysis of historical trend of eutrophication in Lake

395

Nakaumi, Japan, using concentrations of several index elements in sediment cores (in

396

Japanese). Mizu Kankyo Gakkaishi 41:151-157. DOI: 10.2965/jswe.41.151

397

Kyotani T, Koshimizu S, Kobayashi H (2005) Short-term cycle of eolian dust (Kosa)

398

recorded in Lake Kawaguchi sediments, central Japan. Atmos Environ 39: 3335-

399

3342. DOI: 10.1016/j.atmosenv.2005.01.026

400

Lacombe M, Garçon V, Comtat M, Oriol L, Sudre J, Thouron D, Le Bris N, Provost C

401

(2007) Silicate determination in sea water Toward a reagentless electrochemical

402

method. Mar Chem 106: 489-497. DOI: 10.1016/j.marchem.2007.05.002

403

Lehtimäki M, Sinkko H, Tallberg P (2016) The role of oxygen conditions in the

404

microbial dissolution of biogenic silica under brackish conditions. Biogeochemistry

405

129: 355-371. DOI: 10.1007/s10533-016-0237

406

Lehtoranta J, Ekholm P, Pitkänen H (2009) Coastal eutrophication thresholds: a matter

18

407

408

of sediment microbial processes. Ambio 38: 303-308. DOI: 10.1579/09-A-656.1

Li X, Song J, Dai J, Yuan H, Li N, Li F, Sun S (2006) Biogenic silicate accumulation in

409

sediments, Jiaozhou Bay. Chin J Oceanol Limnol 24: 270-077. DOI:

410

10.1007/BF02842627

411

Maekawa K, Shirasaki K, Sawada T, Yamaguchi S, Utsunomiya T, Aoki K, Tagawa S,

412

Isomatsu Y (1982) Study on the eutrophication of Lakes Mikata Goko: Horizontal

413

distribution of water quality of the lakes (in Japanese). Annual Report of The

414

Environmental Pollution Research Center of Fukui Prefecture, Japan, pp 181-185

415

Nagasaka M, Yoshizawa K, Ariizumi K, Hirabayashi K (2002) Temporal changes and

416

vertical distribution of macrophytes in Lake Kawaguchi. Limnology 3: 107-114.

417

DOI: 10.1007/s102010200012

418

Nalewajko C, Murphy T (2001) Effects of temperature, and availability of nitrogen and

419

phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an

420

experimental approach. Limnology 2: 45-48. DOI: 10.1007/s102010170015

421

422

423

424

425

Ning R (2002) Discussion of silica speciation, fouling, control and maximum reduction,

Desalination 151: 67-73. DOI: 10.1016/S0011-9164(02)00973-6

O'Connor T (1961) The reaction rates of polysilicic acids with molybdic acid. J Phys

Chem 65: 1-5. DOI: 10.1021/j100819a001

Park JY, Sugahara S, Egawa M, Seike Y (2020) Mechanism of silicate elution by

426

hydrogen sulfide from bottom sediment in a brackish lake. Limnology 21: 197-205.

427

DOI: 10.1007/s10201-019-00601-2

428

Park JY, Sugiyama M (2018) Formation and decomposition of polymeric silicate in pore

429

water, 17th World Lake Conference proceedings, Lake Kasumigaura, Ibaraki, Japan,

430

pp 1159-1161

19

431

Perry C, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in

432

structure control. J Biol Inorg Chem 5: 537-550. DOI: 10.1007/s007750000130

433

Pollingher U (1990) Effects of latitude on phytoplankton composition and abundance in

434

large lakes. In: Tilzer M, Serruya C (eds) Large lakes: Ecological structure and

435

function. Springer, Berlin, Germany. pp 368-402

436

Schelske C, Stoermer E (1971) Eutrophication, silica depletion, and predicted changes

437

in algal quality in Lake Michigan. Science 173: 423-424. DOI:

438

10.1126/science.173.3995.423

439

440

441

Sjöberg S (1996) Silica in aqueous environment. J Non-Cryst Solids 196: 51-57. DOI:

10.1016/0022-3093(95)00562-5

Sugahara S, Yurimoto T, Ayukawa K, Kimoto K, Senga Y, Okumura M, Seike Y (2010)

442

A simple in situ extraction method for dissolved sulfide in sandy mud sediments

443

followed by spectrophotometric determination and its application to the bottom

444

sediment at the Northeast of Ariake Bay (in Japanese). Bunseki Kagaku 59: 1155-

445

1161. DOI: 10.2116/bunsekikagaku.59.1155

446

Swedlund PJ, Webster JG (1999) Adsorption and polymerisation of silicic acid on

447

ferrihydrite, and its effect on arsenic adsorption. Water Research 33: 3413-3422. DOI:

448

10.1016/S0043-1354(99)00055-X

449

450

Tallberg P (2000) Silicon and its impacts on phosphorus in eutrophic freshwater lakes.

Ph. D. thesis. Univ of Helsinki

451

Tanaka M (1992) The Lakes in Japan (in Japanese). Nagoya University, Japan

452

Tanaka M, Takahashi K, Nemoto M, Horimoto N (2013) Selectivity of silica species in

453

ocean observed from seasonal and local changes. Spectrochim Acta, Part A 104: 423-

454

427. DOI: 10.1016/j.saa.2012.11.040

20

455

456

Tarutani T (1989) Polymerization of silicic acid a review. Anal Sci 5: 245-252. DOI:

10.2116/analsci.5.245

457

Terashima A, Ueda T (1982) Effect of bottom dredging on some environmental factors

458

and benthic animals in the South basin of Lake Biwa (in Japanese). Jpn J Limnol 43:

459

81-87. DOI: 10.3739/rikusui.43.81

460

Tréguer P, Nelson D, Van Bennekom A, de Master D, Leynaert A, Quéguiner B (1995)

461

The silica balance in the world ocean: a reestimate. Science 268: 375-379. DOI:

462

10.1126/science.268.5209.375

463

Valdes LM, Price KS, Luther III GW (2002) Iron sulfur phosphorus cycling in the

464

sediments of a shallow coastal bay: implications for sediment nutrient release and

465

benthic macroalgal blooms. Limnol Oceanogr 47: 1346-1354. DOI:

466

10.4319/lo.2002.47.5.1346

467

468

469

470

471

472

Van der Weijden C (2007) Silica I: silicon analytical, physical and terrestrial

geochemistry, Ph. D. thesis. Utrecht University

Wang D (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:

349-371. DOI: 10.3390/md20080016

Willén E (1991) Planktonic diatoms - an ecological review. Archiv für Hydrobiologie.

Supplementband, Algological studies 62: 69-106. ISSN 0342-1120

473

Yamamoto S, Nakamura T, Uchiyama T (2017) Newly discovered lake bottom springs

474

from Lake Kawaguchi, the Northern foot of Mount Fuji, Japan, Journal of Japanese

475

Association of Hydrological Sciences 47: 49-59. DOI: 10.4145/jahs.47.49

476

Yee N, Phoenix V, Konhauser K, Benning L, Ferris G (2003) The effect of

477

cyanobacteria on silica precipitation at neutral pH: implications for bacterial

478

silicification in geothermal hot springs. Chem Geol 199: 83-90. DOI: 10.1016/S000921

479

480

2541(03)00120-7

Zuhl RW, Amjad Z (2013) Solution chemistry impact on silica polymerization by

481

inhibitors. In: Amjad Z (ed) Mineral Scales in Biological and Industrial Systems.

482

CRC Press, Florida, US. pp 173-200

22

483

Figure legends

484

Figure 1 Sampling points in each lake (Lake Nakaumi, 35.43°N 144.27°E; Lake Suigetsu,

485

35.58°N 135.88°E; Lake Suga, 35.58°N 135.90°E; Lake Biwa, 35.00°N 135.57°E; Lake

486

Kawaguchi, 35.51°N 138.73°E).

487

Figure 2 Schematic experimental process to evaluate PSi stability. The 0.4-µm nuc

488

leopore filter was used to separate the silicates adsorbed on Fe(OH)3 precipitate f

489

rom the initial solution (the mixture of MSi and DFe). Moreover, the 0.2-µm nu

490

cleopore filter was used to remove FeS precipitate, including the colloidal FeS c

491

ompletely.

492

Figure 3 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore water of Lake

493

Nakaumi (August 21, 2017). No significant difference was observed between TSi and

494

MSi concentrations.

495

Figure 4 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore waters of Lakes

496

Suigetsu (left) and Suga (right) on May 20, 2017.

497

Figure 5 Vertical profiles of DO in Lake Biwa (●, September 21, 2017) and Lake

498

Kawaguchi (〇, September 30, 2017).

499

Figure 6 Vertical profiles of DFe and H2S + HS− in the pore waters of Lake Biwa (●,

500

September 21, 2017) and Lake Kawaguchi (〇, September 30, 2017).

501

Figure 7 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore waters of Lake

502

Biwa (left; September 21, 2017) and Lake Kawaguchi (right; September 30, 2017).

23

503

504

Figure 8 Annual change in DO concentration in the hypolimnion layer (water depth: 12

m) of Lake Biwa.

505

Figure 9 Vertical profiles of DFe (■), H2S +HS− (△), TSi (□), MSi (〇), and PSi (▲)

506

in the pore water of Lake Biwa from March 14 to December 15, 2017.

507

Figure 10 Formation of polymeric silicate in the adsorption reaction of silicate onto

508

ferric hydroxide, over 120 days. Only the concentrations of TSi (□), MSi (〇), and PSi

509

(▲) in the precipitate are presented.

510

Figure 11 Stability of PSi under each set of conditions, namely HNO3 + Aeration (〇),

511

HNO3 + Anaeration (□), Na2S + Aeration (●), and Na2S + Anaeration (▲), over 14

512

days.

513

Figure 12 Changes in the concentration of H2S + HS− and DO under each set of

514

conditions, over two weeks. □: DO in HNO3 + Aeration, ●: DO in Na2S + Aeration,

515

△: H2S + HS− in Na2S + Aeration, and ▲: H2S + HS− in Na2S + Anaeration. Note that

516

concentrations of DO in HNO3 + Anaeration, DO in Na2S + Anaeration, and H2S + HS−

517

in HNO3 + Aeration/Anaeration have been omitted because these values were 0 mg-O2

518

L-1 (DO) or 0 mmol L-1 (H2S + HS−) throughout the experimental period.

519

520

24

521

Figures

522

523

Figure 1 Sampling points in each lake (Lake Nakaumi, 35.43°N 144.27°E; Lake Suigets

524

u, 35.58°N 135.88°E; Lake Suga, 35.58°N 135.90°E; Lake Biwa, 35.00°N 135.57°E; La

525

ke Kawaguchi, 35.51°N 138.73°E).

526

25

1.0 mmol L-1 MSi and 0.1 mmol L-1 DFe (Fe3+) at pH 7.0 (1000 mL)

Storage for 6 months

First Fraction

(HNO3 + Aeration)

Second Fraction

(HNO3 + Anaeration)

Third Fraction

(Na2S + Aeration)

Fourth Fraction

(Na2S + Anaeration)

100 mL

100 mL

100 mL

100 mL

Filtration (0.40-µm Nucleopore Filter)

Filtrate

Precipitate

Filtrate

Precipitate

Filtrate

Precipitate

Filtrate

Precipitate

Chemical

Analysis

0.02 mol L-1

HNO3

100 mL

Chemical

Analysis

0.02 mol L-1

HNO3

100 mL

Chemical

Analysis

0.3 mmol L-1

Na2S

100 mL

Chemical

Analysis

0.3 mmol L-1

Na2S

100 mL

Filtration (0.20-µm Nucleopore Filter)

Aeration

Anaeration

Aeration

Anaeration

Leave for 0 - 14 days under each condition

527

Chemical Analysis for MSi, TSi, PSi, DO and total dissolved hydrogen sulfide (H2S + HS-)

528

Figure 2 Schematic experimental process to evaluate PSi stability. The 0.4-µm

529

nucleopore filter was used to separate the silicates adsorbed on Fe(OH)3 precipitate

530

from the initial solution (the mixture of MSi and DFe). Moreover, the 0.2-µm

531

nucleopore filter was used to remove FeS precipitate, including the colloidal FeS

532

completely.

533

26

534

535

Figure 3 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore water of Lake

536

Nakaumi (August 21, 2017). No significant difference was observed between TSi and

537

MSi concentrations.

538

539

540

27

541

542

Figure 4 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore waters of Lakes

543

Suigetsu (left) and Suga (right) on May 20, 2017.

544

545

28

546

547

Figure 5 Vertical profiles of DO in Lake Biwa (●, September 21, 2017) and Lake

548

Kawaguchi (〇, September 30, 2017).

549

29

550

551

Figure 6 Vertical profiles of DFe and H2S + HS− in the pore waters of Lake Biwa (●,

552

September 21, 2017) and Lake Kawaguchi (〇, September 30, 2017).

553

30

554

555

Figure 7 Vertical profiles of TSi (□), MSi (〇), and PSi (▲) in the pore waters of Lake

556

Biwa (left; September 21, 2017) and Lake Kawaguchi (right; September 30, 2017).

557

558

559

31

560

561

562

Figure 8 Annual change in DO concentration in the hypolimnion layer (water depth: 12

m) of Lake Biwa.

563

564

32

565

566

Figure 9 Vertical profiles of DFe (■), H2S +HS− (△), TSi (□), MSi (〇), and PSi (▲)

567

in the pore water of Lake Biwa from March 14 to December 15, 2017.

568

33

569

570

Figure 10 Formation of polymeric silicate in the adsorption reaction of silicate onto

571

ferric hydroxide, over 120 days. Only the concentrations of TSi (□), MSi (〇), and PSi

572

(▲) in the precipitate are presented.

573

574

575

34

576

577

Figure 11 Stability of PSi under each set of conditions, namely HNO3 + Aeration (〇),

578

HNO3 + Anaeration (□), Na2S + Aeration (●), and Na2S + Anaeration (▲), over 14

579

days.

580

35

581

582

Figure 12 Changes in the concentration of H2S + HS− and DO under each set of

583

conditions, over two weeks. □: DO in HNO3 + Aeration, ●: DO in Na2S + Aeration,

584

△: H2S + HS− in Na2S + Aeration, and ▲: H2S + HS− in Na2S + Anaeration. Note that

585

concentrations of DO in HNO3 + Anaeration, DO in Na2S + Anaeration, and H2S + HS−

586

in HNO3 + Aeration/Anaeration have been omitted because these values were 0 mg-O2

587

L-1 (DO) or 0 mmol L-1 (H2S + HS−) throughout the experimental period.

588

36

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る