リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chorioallantoic membrane assay revealed the role of TIPARP (2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase) in lung adenocarcinoma-induced angiogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chorioallantoic membrane assay revealed the role of TIPARP (2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase) in lung adenocarcinoma-induced angiogenesis

Miura, Kenji Koyanagi-Aoi, Michiyo Maniwa, Yoshimasa Aoi, Takashi 神戸大学

2023.02.25

概要

Background The chorioallantoic membrane (CAM) assay is a well-established technique to evaluate tumor invasion and angiogenesis and may overcome the shortcoming of the patient-derived xenograft (PDX) mouse model. Currently, few reports have described lung cancer invasion and angiogenesis in the CAM assay. We therefore used the CAM assay in the evaluation of lung cancer. Method Lung cancer cell line-derived organoids or lung cancer cell lines were transplanted into the CAM on embryonic development day (EDD) 10, and an analysis was performed on EDD 15. Microscopic and macroscopic images and movies of the grafts on the CAM were captured and analyzed. The relationships between the graft and chick vessels were evaluated using immunohistochemistry. Results We transplanted lung cancer cell lines and cell line-derived organoid into a CAM to investigate angiogenesis and invasion. They engrafted on the CAM at a rate of 50–83%. A549-OKS cells showed enhanced cell invasion and angiogenesis on the CAM in comparison to A549-GFP cells as was reported in vitro. Next, we found that A549-TIPARP cells promoted angiogenesis on the CAM. RNA-seq identified 203 genes that were upregulated more than twofold in comparison to A549-GFP cells. A pathway analysis revealed many upregulated pathways related to degradation and synthesis of the extracellular matrix in A549-TIPARP cells. Conclusions The CAM assay can be used to evaluate and research invasion and angiogenesis in lung cancer. The elevated expression of TIPARP in lung cancer may induce angiogenesis by remodeling the extracellular matrix.

この論文で使われている画像

参考文献

1. Forde PM, Kelly RJ, Brahmer JR. New strategies in lung cancer: translating

immunotherapy into clinical practice. Clin Cancer Res. 2014;20(5):1067–

73. https://​doi.​org/​10.​1158/​1078-​0432.​CCR-​13-​0731.

2. Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, da Ho

JC, da Chu T, Zaatar A, OsorioSanchez JA, Vu VV, Au JS, Inoue A, Lee SM,

Gebski V, Yang JC. Impact of EGFR inhibitor in non-small cell lung cancer

on progression-free and overall survival: a meta-analysis. J Natl Cancer

Inst. 2013;105(9):595–605. https://​doi.​org/​10.​1093/​jnci/​djt072.

3. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A,

Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby

MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, KEYNOTE-024

Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive

non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://​

doi.​org/​10.​1056/​NEJMo​a1606​774.

4. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny

Costa E, Park K, Alexandru A, Lupinacci L, de la Mora JE, Sakai H, Albert I,

Vergnenegre A, Peters S, Syrigos K, Barlesi F, Reck M, Borghaei H, Brahmer

JR, O’Byrne KJ, Geese WJ, Bhagavatheeswaran P, Rabindran SK, Kasinathan

RS, Nathan FE, Ramalingam SS. Nivolumab plus ipilimumab in advanced

non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–31. https://​

doi.​org/​10.​1056/​NEJMo​a1910​231.

5. Driehuis E, Kretzschmar K, Clevers H. Establishment of patientderived cancer organoids for drug-screening applications. Nat Protoc.

2020;15(10):3380–409. https://​doi.​org/​10.​1038/​s41596-​020-​0379-4.

6. Huo KG, D’Arcangelo E, Tsao MS. Patient-derived cell line, xenograft

and organoid models in lung cancer therapy. Transl Lung Cancer Res.

2020;9(5):2214–32. https://​doi.​org/​10.​21037/​tlcr-​20-​154.

7. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid

model systems in cancer research. EMBO J. 2019. https://​doi.​org/​10.​

15252/​embj.​20191​01654.

8. Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C. Patient-derived

xenografts: a relevant preclinical model for drug development. J Exp Clin

Cancer Res. 2016;35(1):189. https://​doi.​org/​10.​1186/​s13046-​016-​0462-4.

9. Kita K, Fukuda K, Takahashi H, Tanimoto A, Nishiyama A, Arai S, Takeuchi S,

Yamashita K, Ohtsubo K, Otani S, Yanagimura N, Suzuki C, Ikeda H, Tamura

M, Matsumoto I, Yano S. Patient-derived xenograft models of non-small

cell lung cancer for evaluating targeted drug sensitivity and resistance.

Cancer Sci. 2019;110(10):3215–24. https://​doi.​org/​10.​1111/​cas.​14171.

10. John T, Kohler D, Pintilie M, Yanagawa N, Pham NA, Li M, Panchal D, Hui F,

Meng F, Shepherd FA, Tsao MS. The ability to form primary tumor xeno‑

grafts is predictive of increased risk of disease recurrence in early-stage

Miura et al. Cancer Cell International

11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. (2023) 23:34

non-small cell lung cancer. Clin Cancer Res. 2011;17(1):134–41. https://​

doi.​org/​10.​1158/​1078-​0432.​CCR-​10-​2224.

Chen X, Shen C, Wei Z, Zhang R, Wang Y, Jiang L, Chen K, Qiu S, Zhang

Y, Zhang T, Chen B, Xu Y, Feng Q, Huang J, Zhong Z, Li H, Che G, Xiao K.

Patient-derived non-small cell lung cancer xenograft mirrors complex

tumor heterogeneity. Cancer Biol Med. 2021;18(1):184–98. https://​doi.​

org/​10.​20892/j.​issn.​2095-​3941.​2020.​0012.

Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki

T, Yamazaki T, Toyohara T, Osafune K, Nakauchi H, Yoshikawa HY, Taniguchi

H. Vascularized and complex organ buds from diverse tissues via mes‑

enchymal cell-driven condensation. Cell Stem Cell. 2015;16(5):556–65.

https://​doi.​org/​10.​1016/j.​stem.​2015.​03.​004.

Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR,

Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H. Vascularized

and functional human liver from an iPSC-derived organ bud transplant.

Nature. 2013. https://​doi.​org/​10.​1038/​natur​e12271.

Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y, Aoi T. Interleukin-6

blockade attenuates lung cancer tissue construction integrated by

cancer stem cells. Sci Rep. 2017;7(1):12317. https://​doi.​org/​10.​1038/​

s41598-​017-​12017-y.

Chu PY, Koh AP, Antony J, Huang RY. Applications of the chick chorioallan‑

toic membrane as an alternative model for cancer studies. Cells Tissues

Organs. 2021. https://​doi.​org/​10.​1159/​00051​3039.

DeBord LC, Pathak RR, Villaneuva M, Liu HC, Harrington DA, Yu W, Lewis

MT, Sikora AG. The chick chorioallantoic membrane (CAM) as a versatile

patient-derived xenograft (PDX) platform for precision medicine and

preclinical research. Am J Cancer Res. 2018;8(8):1642–60.

Huang WT, Cen WL, He RQ, Xie Y, Zhang Y, Li P, Gan TQ, Chen G, Hu XH.

Effect of miR146a5p on tumor growth in NSCLC using chick chorioal‑

lantoic membrane assay and bioinformatics investigation. Mol Med Rep.

2017;16(6):8781–92. https://​doi.​org/​10.​3892/​mmr.​2017.​7713.

Ishida R, Koyanagi-Aoi M, Oshima N, Kakeji Y, Aoi T. The tissue-reconstruct‑

ing ability of colon cscs is enhanced by FK506 and suppressed by GSK3

inhibition. Mol Cancer Res. 2017;15(10):1455–66. https://​doi.​org/​10.​1158/​

1541-​7786.

Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. The chicken chorioallantoic

membrane model in biology, medicine and bioengineering. Angiogen‑

esis. 2014;17(4):779–804. https://​doi.​org/​10.​1007/​s10456-​014-​9440-7.

Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization:

alternative therapeutic targets. Angiogenesis. 2017;20(4):409–26. https://​

doi.​org/​10.​1007/​s10456-​017-​9562-9.

Fergelot P, Bernhard JC, Soulet F, Kilarski WW, Léon C, Courtois N,

Deminière C, Herbert JM, Antczak P, Falciani F, Rioux-Leclercq N, Patard JJ,

Ferrière JM, Ravaud A, Hagedorn M, Bikfalvi A. The experimental renal cell

carcinoma model in the chick embryo. Angiogenesis. 2013;16(1):181–94.

https://​doi.​org/​10.​1007/​s10456-​012-​9311-z.

Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The human SLC1A5

(ASCT2) amino acid transporter: from function to structure and role in

cell biology. Front Cell Dev Biol. 2018;6:96. https://​doi.​org/​10.​3389/​fcell.​

2018.​00096.

Miyaho RN, Nakagawa S, Hashimoto-Gotoh A, Nakaya Y, Shimode S,

Sakaguchi S, Yoshikawa R, Takahashi MU, Miyazawa T. Corrigendum to

“susceptibility of domestic animals to pseudotype virus bearing RD-114

virus envelope protein. Gene. 2019;690:137. https://​doi.​org/​10.​1016/j.​

gene.​2019.​01.​002.

Nitzsche B, Rong WW, Goede A, Hoffmann B, Scarpa F, Kuebler WM,

Secomb TW, Pries AR. Coalescent angiogenesis-evidence for a novel

concept of vascular network maturation. Angiogenesis. 2022;25(1):35–45.

https://​doi.​org/​10.​1007/​s10456-​021-​09824-3.

Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treat‑

ment of solid malignancies. Clin Ther. 2006;28(11):1779–802. https://​doi.​

org/​10.​1016/j.​clint​hera.​2006.​11.​015.

Hagedorn M, Zilberberg L, Wilting J, Canron X, Carrabba G, Giussani

C, Pluderi M, Bello L, Bikfalvi A. Domain swapping in a COOH-terminal

fragment of platelet factor 4 generates potent angiogenesis inhibitors.

Cancer Res. 2002;62(23):6884–90.

D’Abadia PL, BailÃo EFLC, Lino J, Únior RS, Oliveira MG, Silva VB, Oliveira

LAR, ConceiÇÃo EC, Melo-Reis PR, Borges LL, GonÇalves PJ, Almeida LM.

Hancornia speciosa serum fraction latex stimulates the angiogenesis

and extracellular matrix remodeling processes. An Acad Bras Cienc.

2020;92(2): e20190107.

Page 13 of 13

28. DeFouw DO, Rizzo VJ, Steinfeld R, Feinberg RN. Mapping of the

microcirculation in the chick chorioallantoic membrane during normal

angiogenesis. Microvasc Res. 1989;38(2):136–47. https://​doi.​org/​10.​1016/​

0026-​2862(89)​90022-8.

29. Ribatti D, Nico B, Vacca A, Presta M. The gelatin sponge-chorioallantoic

membrane assay. Nat Protoc. 2006;1(1):85–91. https://​doi.​org/​10.​1038/​

nprot.​2006.​13.

30. Nowak-Sliwinska P, Ballini JP, Wagnières G, van den Bergh H. Processing

of fluorescence angiograms for the quantification of vascular effects

induced by anti-angiogenic agents in the CAM model. Microvasc Res.

2010;79(1):21–8. https://​doi.​org/​10.​1016/j.​mvr.​2009.​10.​004.

31. Gomez A, Bindesbøll C, Satheesh SV, Grimaldi G, Hutin D, MacPherson

L, Ahmed S, Tamblyn L, Cho T, Nebb HI, Moen A, Anonsen JH, Grant DM,

Matthews J. Characterization of TCDD-inducible poly-ADP-ribose poly‑

merase (TIPARP/ARTD14) catalytic activity. Biochem J. 2018;475(23):3827–

46. https://​doi.​org/​10.​1042/​BCJ20​180347.

32. Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E,

et al. Gene expression profiling of A549 cells exposed to Milan PM25.

Toxicol Lett. 2012;209(2):136–45. https://​doi.​org/​10.​1016/j.​toxlet.​2011.​11.​

015.

33. Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N. The

collagen receptor uPARAP/Endo180 in tissue degradation and cancer

(Review). Int J Oncol. 2015;47(4):1177–88. https://​doi.​org/​10.​3892/​ijo.​

2015.​3120.

34. Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bik‑

falvi A. Accessing key steps of human tumor progression in vivo by using

an avian embryo model. Proc Natl Acad Sci USA. 2005;102(5):1643–8.

https://​doi.​org/​10.​1073/​pnas.​04086​22102.

35. Pawlikowska P, Tayoun T, Oulhen M, Faugeroux V, Rouffiac V, Aberlenc

A, Pommier AL, Honore A, Marty V, Bawa O, Lacroix L, Scoazec JY,

Chauchereau A, Laplace-Builhe C, Farace F. Exploitation of the chick

embryo chorioallantoic membrane (CAM) as a platform for anti-meta‑

static drug testing. Sci Rep. 2020;10(1):16876. https://​doi.​org/​10.​1038/​

s41598-​020-​73632-w.

36. Gozgit JM, Vasbinder MM, Abo RP, Kunii K, Kuplast-Barr KG, Gui B, Lu

AZ, Molina JR, Minissale E, Swinger KK, Wigle TJ, Blackwell DJ, Majer CR,

Ren Y, Niepel M, Varsamis ZA, Nayak SP, Bamberg E, Mo JR, Church WD,

Mady ASA, Song J, Utley L, Rao PE, Mitchison TJ, Kuntz KW, Richon VM,

Keilhack H. PARP7 negatively regulates the type I interferon response in

cancer cells and its inhibition triggers antitumor immunity. Cancer Cell.

2021;39(9):1214-1226.e10. https://​doi.​org/​10.​1016/j.​ccell.​2021.​06.​018.

37. Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang

D, Lea JS, Kraus WL. Identification of PARP-7 substrates reveals a role

for MARylation in microtubule control in ovarian cancer cells. eLife.

2021;10:e60481. https://​doi.​org/​10.​7554/​eLife.​60481.

38. Zhang L, Cao J, Dong L, Lin H. TiPARP forms nuclear condensates to

degrade HIF-1α and suppress tumorigenesis. Proc Natl Acad Sci U S A.

2020;117(24):13447–56. https://​doi.​org/​10.​1073/​pnas.​19218​15117.

39. Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribu‑

tion in management of cancer proliferation, metastasis and drug

targeting. Mol Biol Rep. 2021;48(9):6525–38. https://​doi.​org/​10.​1007/​

s11033-​021-​06635-z.

40. Nagase H, Visse R, Murphy G. Structure and function of matrix metal‑

loproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. https://​doi.​

org/​10.​1016/j.​cardi​ores.​2005.​12.​002.

41. Rijo MP, Diani-Moore S, Yang C, Zhou P, Rifkind AB. Roles of the ubiquitin

ligase CUL4B and ADP-ribosyltransferase TiPARP in TCDD-induced nuclear

export and proteasomal degradation of the transcription factor AHR. J

Biol Chem. 2021;297(2):100886. https://​doi.​org/​10.​1016/j.​jbc.​2021.​100886.

42. Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay.

Reprod Toxicol. 2017;70:97–101. https://​doi.​org/​10.​1016/j.​repro​tox.​2016.​

11.​004.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in pub‑

lished maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る