リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「接着プライマーおよび光重合がセルフアドヒーシブ型レジンセメントの重合反応動態に及ぼす影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

接着プライマーおよび光重合がセルフアドヒーシブ型レジンセメントの重合反応動態に及ぼす影響

尾崎 茜 東北大学

2021.03.25

概要

近年,歯冠補綴治療において,接着手技に左右されにくいセルフアドヒーシブ型レジンセメントに接着プライマーを併用することで接着強さを向上させる術式が注目されている。しかしながら,セルフアドヒーシブ型レジンセメントの重合反応動態に接着プライマーや光重合が及ぼす影響については未だ十分に研究がなされていない。そこで本研究では,重合度やビッカース硬さ,フリーラジカル生成量に焦点を当て,接着プライマーと光重合がセルフアドヒーシブ型レジンセメントの重合反応動態に及ぼす影響を明らかにすることを目的とした。本研究では,ウレタンジメタクリレート(UDMA)系のセルフアドヒーシブ型レジンセメントを使用した。セメントペーストの重量 90 mg に対して 1 µLの接着プライマーを混和させる群[P(+)]および接着プライマーを混和させない群[P(-)]に対し,LED 光照射器で 10 秒間光照射して光重合させる群[L(+)]と,光照射を行わない化学重合のみの群[L(-)]を比較した。重合度,ビッカース硬さおよびフリーラジカル生成量を,それぞれフーリエ変換赤外分光法(FTIR),微小硬度計および電子スピン共鳴法(ESR)を用いて評価を行った。それぞれ 168 時間(1 週間)後まで繰り返し計測を行った結果,重合度とビッカース硬さは重合開始直後 30 分間で急速に上昇し,その後,24〜48時間後まで徐々に上昇し続けプラトーに到達した。フリーラジカル生成量は初期の 30 分間に急増して 60〜120 分後にプラトーに到達した後,徐々に減少した。重合開始直後における重合度の上昇とフリーラジカル生成量の増加に対しては,接着プライマーよりも光重合の影響の方が大きかった。一方,接着プライマーが重合度,ビッカース硬さおよびフリーラジカル生成量に及ぼす影響は,重合開始から 5〜10 分後には光重合の影響よりも大きくなった。以上の結果より,接着プライマーは重合初期段階におけるフリーラジカル反応を増強させ,セルフアドヒーシブ型レジンセメントの重合度や機械的強度(硬さ)の上昇に関与することが示唆された。

この論文で使われている画像

参考文献

1. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005; 84: 118-132.

2. Van Meerbeek B, Van Landuyt K, De Munck J, Hashimoto M, Peumans M, Lambrechts P, Yoshida Y, Inoue S, Suzuki K. Technique-sensitivity of contemporary adhesives. Dent Mater J. 2005; 24: 1-13.

3. Radovic I, Monticelli F, Goracci C, Vulicevic ZR, Ferrari M. Self-adhesive resin cements: a literature review. J Adhes Dent. 2008; 10: 251-258.

4. Weiser F, Behr M. Self-adhesive resin cements: a clinical review. J Prosthodont. 2015; 24: 100-108.

5. Ferracane JL, Stansbury JW, Burke FJ. Self-adhesive resin cements - chemistry, properties and clinical considerations. J Oral Rehabil. 2011; 38: 295-314.

6. Mazzitelli C, Monticelli F, Toledano M, Ferrari M, Osorio R. Dentin treatment effects on the bonding performance of self-adhesive resin cements. Eur J Oral Sci. 2010; 118: 80-86.

7. Yu H, Yoshida K, Cheng H, Sawase T. Bonding of different self-adhesive resins to high-strength composite resin block treated with surface conditioning. J Prosthodont Res. 2019; 63: 340-346.

8. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent. 2014; 26: 382-393.

9. Ankyu S, Nakamura K, Harada A, Hong G, Kanno T, Niwano Y, Örtengren U, Egusa H. Fatigue analysis of computer-aided design/computer-aided manufacturing resin- based composite vs. lithium disilicate glass-ceramic. Eur J Oral Sci. 2016; 124: 387- 395.

10. Harada A, Nakamura K, Kanno T, Inagaki R, Örtengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci. 2015; 123: 122-129.

11. Kassem AS, Atta O, El-Mowafy O. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont. 2012; 21: 28-32.

12. Krejci I, Daher R. Stress distribution difference between Lava Ultimate full crowns and IPS e.max CAD full crowns on a natural tooth and on tooth-shaped implant abutments. Odontology. 2017; 105: 254-256.

13. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res. 2016; 95: 487-495.

14. Vanoorbeek S, Vandamme K, Lijnen I, Naert I. Computer-aided designed/computer- assisted manufactured composite resin versus ceramic single-tooth restorations: a 3- year clinical study. Int J Prosthodont. 2010; 23: 223-230.

15. Bähr N, Keul C, Edelhoff D, Eichberger M, Roos M, Gernet W, Stawarczyk B. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials. Dent Mater J. 2013; 32: 492-501.

16. Gilbert S, Keul C, Roos M, Edelhoff D, Stawarczyk B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods. Clin Oral Investig. 2016; 20: 227-236.

17. Stawarczyk B, Basler T, Ender A, Roos M, Ozcan M, Hämmerle C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J Prosthet Dent. 2012; 107: 94-101.

18. Ankyu S, Nakamura K, Harada A, Inagaki R, Katsuda Y, Kanno T, Niwano Y, Örtengren U, Egusa H. Influence of microscale expansion and contraction caused by thermal and mechanical fatigue on retentive strength of CAD/CAM-generated resin- based composite crowns. J Mech Behav Biomed Mater. 2018; 86: 89-97.

19. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS. Clinical Bonding of Resin Nano Ceramic Restorations to Zirconia Abutments: A Case Series within a Randomized Clinical Trial. Clin Implant Dent Relat Res. 2016; 18: 984-992.

20. Kurokawa H, Shiratsuchi K, Suda S, Nagura Y, Suzuki S, Moritake N, Yamauchi K, Miyazaki M. Effect of light irradiation and primer application on polymerization of selfadhesive resin cements monitored by ultrasonic velocity. Dent Mater J. 2018; 37: 534-541.

21. Lise DP, Van Ende A, De Munck J, Yoshihara K, Nagaoka N, Cardoso Vieira LC, Van Meerbeek B. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements. Dent Mater. 2018; 34: 296-305.

22. Barszczewska-Rybarek IM. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Materials (Basel). 2019; 12: 4057.

23. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013; 29: e213- 217.

24. Anusavice KJ. 2013; Dental polymers, in: Anusavice KJ, Shen C, Rawls HR. (Eds.), Phillips’ science of dental materials, 12th ed. Saunders, St. Louis, MO USA, pp. 92- 110

25. Amorim BC, Vicentin BLS, Di Mauro E. Post-polymerization reactivity of free radicals trapped in resin-based dental restorative materials by ESR spectroscopy. Polym Bull. 2020; 77: 3249–3262.

26. Leprince JG, Lamblin G, Devaux J, Dewaele M, Mestdagh M, Palin WM, Gallez B, Leloup G. Irradiation modes' impact on radical entrapment in photoactive resins. J Dent Res. 2010; 89: 1494-1498.

27. De Souza G, Braga RR, Cesar PF, Lopes GC. Correlation between clinical performance and degree of conversion of resin cements: a literature review. J Appl Oral Sci. 2015; 23: 358-368.

28. Collares FM, Portella FF, Leitune VC, Samuel SM. Discrepancies in degree of conversion measurements by FTIR. Braz Oral Res. 2013; 27: 453-454.

29. Dursun E, Nguyen JF, Tang ML, Attal JP, Sadoun M. HEMA release and degree of conversion from a resin-modified glass ionomer cement after various delays of light activation. Dent Mater. 2016; 32: 640-645.

30. Lee JK, Choi JY, Lim BS, Lee YK, Sakaguchi RL. Change of properties during storage of a UDMA/TEGDMA dental resin. J Biomed Mater Res B Appl Biomater. 2004; 68: 216-221.

31. Passos SP, Kimpara ET, Bottino MA, Santos GC Jr, Rizkalla AS. Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR. Dent Mater. 2013; 29: 317-323.

32. Stoll S, Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson. 2006; 178: 42-55.

33. Vicentin BLS, Netto AM, Blümich B, Di Mauro E. Identification of free radicals generated by different curing modes in a dental resin cement. Appl Magn Reson. 2016; 47: 1003-1014.

34. da Silva Fontes A, Vicentin BLS, Valezi DF, da Costa MF, Sano W, Di Mauro E. A multifrequency (X-, Q-, and W-band) EPR and DFT study of a photopolymerizable dental resin. Appl Magn Reson. 2014; 45: 681-692.

35. Khan AA, Al-Kheraif AA, Mohamed BA, Perea-Lowery L, Säilynoja E, Vallittu PK. Influence of primers on the properties of the adhesive interface between resin composite luting cement and fiber-reinforced composite. J Mech Behav Biomed Mater. 2018; 88: 281-287.

36. Hyun HK, Christoferson CK, Pfeifer CS, Felix C, Ferracane JL. Effect of shade, opacity and layer thickness on light transmission through a nano-hybrid dental composite during curing. J Esthet Restor Dent. 2017; 29: 362-367.

37. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate- based dental composite technology and curing efficiency. Dent Mater. 2013; 29: 139- 156.

38. Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, Leprince JG. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014; 30: 594-604.

39. Kumbuloglu O, Lassila LV, User A, Vallittu PK. A study of the physical and chemical properties of four resin composite luting cements. Int J Prosthodont. 2004; 17: 357-363.

40. Vrochari AD, Eliades G, Hellwig E, Wrbas KT. Curing efficiency of four self- etching, self-adhesive resin cements. Dent Mater. 2009; 25: 1104-1108.

41. Truffier-Boutry D, Gallez XA, Demoustier-Champagne S, Devaux J, Mestdagh M, Champagne B, Leloup G. Identification of free radicals trapped in solid methacrylated resins. J Polym Sci A Polym Chem. 2003; 41: 1691-1699.

42. Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G. A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater. 2006; 22: 405-412.

43. Nakamura K, Kanno T, Ikai H, Sato E, Mokudai T, Niwano Y, Ozawa T, Kohno M. Reevaluation of quantitative ESR spin trapping analysis of hydroxyl radical by applying sonolysis of water as a model system. Bull Chem Soc Jpn. 2010; 83: 1037– 1046

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る