リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electron microscopy in semiconductor inspection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electron microscopy in semiconductor inspection

Nakamae, Koji 大阪大学

2021.03.25

概要

Currently, semiconductor devices are manufactured in a technology node of several nanometers. Electron microscopy is mainly used in semiconductor inspection in manufacturing stages since accelerated electrons have wavelengths of nanometers or less, and a high spatial resolution can be expected. Among various electron microscopes since the scanning electron microscope (SEM) can observe the sample as it is without processing the sample, the SEM-based inspection instrument is mainly used at each stage of manufacturing the semiconductor device. The paper presents a review of SEM-based electron microscopy in semiconductor inspection. First, an overview of electron microscopy is described to understand the electron-sample interaction, the characteristics of electrons emitted from an irradiated specimen, charging, noise, and so on. Next, application areas such as mask inspection are introduced. Finally, future challenges are discussed.

参考文献

[1] Newbury D E 1986 Electron beam-specimen interactions in the analytical electron microscope (Chapter 1 (1-26) in Joy D C et al Principles of analytical electron microscopy: New York:Springer) https://doi.org/10.1007/978-1-4899-2037-9_1

[2] Joy D C 1995 Monte Carlo modeling for electron microscopy and microanalysis (New York: Oxford)

[3] Reimer L and Lodding B 1984 Calculation and tabulation of Mott cross-sections for large- angle electron scattering Scanning 6 128-151 https://doi.org/10.1002/sca.4950060303

[4] Czyzewski Z et al 1990 Calculations of Mott scattering cross section Journal of Applied Physic. 68 3066-3072 https://doi.org/10.1063/1.346400

[5] Suzuki M et al 2018 Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives Proc. SPIE 10585, Metrology, Inspection, and Process Control for Microlithography XXXII, pp.1058517 1- 14 doi: 10.1117/12.2301383

[6] Murata K, Kyser D F and Ting C H 1981 Monte Carlo simulation of fast secondary electron production in electron beam resists Journal of Applied Physics 52 4396-4405 https://doi.org/10.1063/1.329366

[7] Joy D C, Newbury D E and Myklebust R L 1982 The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope Journal of Microscopy 128 RP1-RP2 https://doi.org/10.1111/j.1365-2818.1982.tb00442.x

[8] Bethe H A 1930 Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen der Physik 5 325–400

[9] Ferrell R A 1956 Angular dependence of the characteristic energy loss of electrons passing through metal foils Physical Review 101 554-563 https://doi.org/10.1103/PhysRev.101.554

[10] Hirsch P B et al 1965 Electron microscopy of thin crystals (London: Butterworths)

[11] Reimer L 1985 Scanning electron microscopy: physics of image formation and microanalysis (Berlin Heidelberg: Springer-Verlag)

[12] Bongeler R et al 1993 Electron-specimen interactions in low-voltage scanning electron microscopy SCANNING 15 1-18 https://doi.org/10.1002/sca.4950150102

[13] Niedrig H 1978 Physical background of electron backscattering SCANNING 1 17-34 https://doi.org/10.1002/sca.4950010103

[14] Seiler H 1983 Secondary electron emission in the scanning electron microscope Journal of Applied Physics 54 R1-R18 https://doi.org/10.1063/1.332840

[15] Joy D C and Joy C S 1996 Low voltage scanning electron microscopy Micron 27 247-263 https://doi.org/10.1016/0968-4328(96)00023-6

[16] Menzel E and Kubalek E 1979 Electron beam test system for VLSI circuit inspection Proc. SEM Conference, edited by Johari O Vol. I, pp. 297-304.

[17] Fujioka H, Nakamae K and Ura K 1985 Signal-to-noise ratio in the stroboscopic scanning electron microscope Journal of Physics E: Scientific Instruments 18 598-603

[18] Nakamae K, Fujioka H and Ura K 1981 Local field effects on voltage contrast in the scanning electron microscope Journal of Physics D: Applied Physics 14 1939-1960

[19] Echlin P 2009 Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis (Springer) DOI: 10.1007/978-0-387-85731-2

[20] Takemasa Y et al 2018 Advanced CD-SEM imaging methodology for EPE measurements Proc. SPIE 10585, Metrology, Inspection, and Process Control for Microlithography XXXII, pp.1058522 1-10 doi: 10.1117/12.2298393

[21] Kessel L van, Hagen C W and Kruit P 2019 Surface effects in simulations of scanning electron microscopy images Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII, pp.109590V 1-15 doi: 10.1117/12.2514824

[22] Arat K T, Klimpel T and Hagen C W 2019 Model improvements to simulate charging in scanning electron microscope J. Micro/Nanolith. MEMS MOEMS 18 044003 1-13 doi: 10.1117/1.JMM.18.4.044003.

[23] Lee C, Yokosuka T and Kazumi H 2018 Developing a flexible model of electron scattering in solid for charging analysis Proc. SPIE 10585, Metrology, Inspection, and Process Control for Microlithography XXXII pp.105852E 1-14 doi: 10.1117/12.2297371

[24] Goldstein J et al 1992. Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum Press) https://doi.org/10.1007/978-1-4939-6676-9

[25] Zach J and Haider M 1995 Aberration correction in a low voltage SEM by a multipole corrector Nuclear Instruments and Methods in Physics Research A 363 316-325 https://doi.org/10.1016/0168-9002(95)00056-9

[26] Cheng Z H et al 2019 Application of aberration corrected low voltage SEM for metrology Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII, pp.1095922 1-9 doi: 10.1117/12.2516017

[27] ISO/TS 24597 2011 Microbeam analysis – scanning electron microscopy - methods of evaluating image sharpness, ISO(the International Organization for Standardization)

[28] Diebold A C 2001 Silicon Semiconductor Metrology (in chapter 1, Handbook of Silicon Semiconductor Metrology (edited by Diebold A C, New York: Marcel Dekker Inc))

[29] Wells O C 1974 Scanning Electron Microscopy (New York: McGraw-Hill Inc)

[30] Nakagaki R, Honda T and Nakamae K 2009 Automatic recognition of defect areas on a semiconductor wafer using multiple scanning electron microscope images Meas. Sci. Technol. 20 pp.075503 1-12 http://dx.doi.org/10.1088/0957-0233/20/7/075503

[31] Konvalina I et al 2019 In-Lens Band-Pass Filter for Secondary Electrons in Ultrahigh Resolution SEM Materials 12 pp.2307 1-13 http://dx.doi.org/10.3390/ma12142307

[32] Suri A et al 2020 Analysis and detection of low-energy electrons in scanning electron microscopes using a Bessel box electron energy analyser Journal of Electron Spectroscopy and Related Phenomena 241 pp.146823 1-8 https://doi.org/10.1016/j.elspec.2019.02.002

[33] Niedrig H 1982 Electron backscattering from thin films Journal of Applied Physics 53 R15-R49 https://doi.org/10.1063/1.331005

[34] Lin W R et al 2018 Fabrication and characterization of a high-performance multi-annular backscattered electron detector for desktop SEM Sensors, 18 pp.3093 1-13 http://dx.doi.org/10.3390/s18093093

[35] Rau E I, Karaulov V Y and Zaitsev S V 2019 Backscattered electron detector for 3D microstructure visualization in scanning electron microscopy Review of Scientific Instruments 90 pp.023701 1-9 https://doi.org/10.1063/1.5054746

[36] Radlička T, Unčovský M and Oral M 2018 In lens BSE detector with energy filtering Ultramicroscopy 189 102-108 https://doi.org/10.1016/j.ultramic.2018.03.015

[37] Timischl F, Date M and Nemoto S 2012 A statistical model of signal–noise in scanning electron microscopy SCANNING 34 137-144 DOI 10.1002/sca.20282

[38] Sakakibara M et al 2019 Impact of secondary electron emission noise in SEM Microscopy 68 279–288 doi: 10.1093/jmicro/dfz 009

[39] Bunday B D 2020 Noise fidelity in SEM simulation Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV, pp.113250R 1-9 doi: 10.1117/12.2559631

[40] Lenthe W C 2018 Advanced detector signal acquisition and electron beam scanning for high resolution SEM imaging Ultramicroscopy 195 93-100 https://doi.org/10.1016/j.ultramic.2018.08.025

[41] Papavieros G and Constantoudis V 2017 Line edge roughness measurement through SEM images: effects of image digitization and their mitigation 33rd European Mask and Lithography Conference , pp. 104460K 1-11 doi: 10.1117/12.2294060

[42] Roy V 2013 Spatial and transform domain filtering method for image de-noising: a review I.J. Modern Education and Computer Science 5 41–49 DOI: 10.5815/ijmecs.2013.07.05

[43] Mack C A, Roey F V and Lorusso G F 2019 Unbiased roughness measurements: subtracting out SEM effects, part 3 Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.109590P 1-10 doi: 10.1117/12.2515898

[44] Mack C A and Bunday B D 2016 Improvements to the analytical linescan model for SEM metrology Metrology, Proc. SPIE 9778, Inspection, and Process Control for Microlithography XXX pp.97780A 1-9 https://doi.org/10.1117/12.2218443

[45] Giannatou E et al 2019 Deep learning nanometrology of line edge roughness Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.1095920 1-11 doi: 10.1117/12.2520941

[46] Zhang K et al 2017 Beyond a gaussian denoiser: residual learning of deep CNN for image denoising IEEE Transactions on Image Processing 26 3142-3155 DOI: 10.1109/TIP.2017.2662206

[47] Midoh Y and Nakamae K 2019 Image quality enhancement of a CD-SEM image using conditional generative adversarial networks Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.109590B 1-10 doi: 10.1117/12.2515152

[48] Isola P et al 2017 Image-to-image translation with conditional adversarial networks 2017 IEEE Conference on Computer Vision and Pattern Recognition pp.5967-5976 DOI: 10.1109/CVPR.2017.632

[49] Yu L et al 2020 SEM image quality enhancement: an unsupervised deep learning approach Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.1132527 1-9 doi: 10.1117/12.2552883

[50] Lehtinen J et al 2018 Noise2Noise: Learning image restoration without clean data PMLR 80 pp.2965-2974

[51] Iida S et al 2016 Investigation of defect detectability for extreme ultraviolet patterned mask using two types of high-throughput electron-beam inspection systems J. Micro/Nanolith. MEMS MOEMS 15, pp.013510 1-7 doi: 10.1117/1.JMM.15.1.013510

[52] Ma E 2018 Multiple beam technology development and application for defect inspection on EUV wafer/mask Proc. SPIE 10810, Photomask Technology 2018 pp.1081014 1-9 doi: 10.1117/12.2503857

[53] Liang T et al 2020 EUV mask infrastructure and actinic pattern mask inspection Proc. SPIE 11323, Extreme Ultraviolet (EUV) Lithography XI pp.1132310 1-13 doi: 10.1117/12.2554496

[54] Nakagaki R, Takagi Y and Nakamae K 2010 Automatic recognition of circuit patterns on semiconductor wafers from multiple scanning electron microscope images Measurement Science and Technology 21 pp.085501 1-14 http://dx.doi.org/10.1088/0957- 0233/21/8/085501

[55] Harada M, Obara K and Nakamae K 2017 A robust SEM auto-focus algorithm using multiple band-pass filters Measurement Science and Technology. 28 pp.015403 1-10 http://dx.doi.org/10.1088/1361-6501/28/1/015403

[56] Harada M, Minekawa Y and Nakamae K 2019 Defect detection techniques robust to process variation in semiconductor inspection Measurement Science and Technology 30 pp.035402 1- 10 https://doi.org/10.1088/1361-6501/aafd77

[57] Ouchi M et al A trainable die-to-database for fast e-Beam inspection: learning normal images to detect defects Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.113252F 1-9 doi: 10.1117/12.2551456

[58] Chawla N V et al 2002 SMOTE: Synthetic Minority Oversampling Technique Journal of Artificial Intelligence Research 16 321-357 DOI: https://doi.org/10.1613/jair.953

[59] Lee P et al 2020 Automated semiconductor wafer defect classification dealing with imbalanced data Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.1132526 1-7 doi: 10.1117/12.2552838

[60] Fukuda H et al 2018 Measurement of pattern roughness and local size variation using CD- SEM J. Micro/Nanolith. MEMS MOEMS 17 pp.041004 1-9 doi: 10.1117/1.JMM.17.4.041004.

[61] Zhigang W et al 2019 What is prevalent CD-SEM's role in EUV era? Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.1095914 1-10 doi: 10.1117/12.2514697

[62] Bizen D et al 2019 CD metrology for EUV resist using high-voltage CD-SEM: shrinkage, image sharpness, repeatability, and line edge roughness J. Micro/Nanolith. MEMS MOEMS 18 pp.034004 1-6 doi: 10.1117/1.JMM.18.3.034004.

[63] Pu L et al 2019 Analyze line roughness sources using power spectral density (PSD) Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.109592W 1- 8 doi:10.1117/12.2516570

[64] Kessel L, Huisman T and Hagen C W 2020 Understanding the influence of 3D sidewall roughness on observed line-edge roughness in scanning electron microscopy images Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.113250Z 1-16 https://doi.org/10.1117/12.2550240

[65] Han J H 2018 Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons Proc. SPIE 10585, Metrology, Inspection, and Process Control for Microlithography XXXII pp.1058521 1-6 doi: 10.1117/12.2296982

[66] Nishihata T et al 2019 Depth measurement technique for extremely deep holes using back- scattered electron images with high voltage CD-SEM Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.109591B 1-9 doi: 10.1117/12.2514799

[67] Sun W et al 2019 High voltage CD-SEM based metrology for 3D-profile measurement using depth-correlated BSE signal Proc. SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXIII pp.1095915 1-8 doi: 10.1117/12.2511272

[68] Tu L et al 2020 3D-NAND wafer process monitoring using high voltage SEM with auto e- beam tilt technology Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.113250L 1-8 doi: 10.1117/12.2551610

[69] Sun W et al 2020 Accuracy improvement of 3D-profiling for HAR features using deep learning Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp.113250N 1-8 doi: 10.1117/12.2551458

[70] Taftia A P et al Recent advances in 3D SEM surface reconstruction Micron 78 54–66. http://dx.doi.org/10.1016/j.micron.2015.07.005

[71] Villarrubia J S Tondare V N and Vladar A E 2016 Virtual rough samples to test 3D nanometer- scale scanning electron microscopy stereo photogrammetry Proc. SPIE 9778, Metrology, Inspection, and Process Control for Microlithography XXX; pp.1-19 doi:10.1117/12.2219777.

[72] Valade C et al 2019 Tilted beam scanning electron microscopy, 3-D metrology for microelectronics industry J. Micro/Nanolith. MEMS MOEMS 18 pp.034001 1-13 doi: 10.1117/1.JMM.18.3.034001.

[73] Neumann J T et al 3D analysis of high-aspect ratio features in 3D-NAND Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV pp,113250M 1-11 doi:10.1117/12.2552006

[74] Overlay control Wikipedia https://en.wikipedia.org/wiki/Overlay_control

[75] Inoue O and Hasumi K 2019 Review of scanning electron microscope-based overlay measurement beyond 3-nm node device J. Micro/Nanolith. MEMS MOEMS 18 pp.021206 1- 15 doi: 10.1117/1.JMM.18.2.021206.

[76] Abramovitz Y et al 2020 Accelerating on-device overlay metrology accuracy verification Proc. SPIE 11325, Metrology, Inspection, and Process Control for Microlithography XXXIV, pp.1132515 1-7 doi: 10.1117/12.2568682

[77] Babu M R et al 2020 Foundry approach for layout risk assessment through comprehensive pattern harvesting and large-scale data analysis Proc. SPIE 11328, Design-Process- Technology Co-optimization for Manufacturability XIV pp.113280H 1-9 doi: 10.1117/12.2551939

[78] Ura K 1981 Address error of electron beam by local electric field Optik 58 281-284

[79] Nakamae K, Fujioka H and Ura K Measurements of deep penetration of low‐energy electrons into metal‐oxide‐semiconductor structure Journal of Applied Physics 52, 1306-1308 https://doi.org/10.1063/1.329756

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る