リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder

Yujie Cui Yufan Zhao Haruko Numata Huakang Bian Kimio Wako Kenta Yamanaka Kenta Aoyagi Chen Zhang Akihiko Chiba 東北大学 DOI:10.1016/j.powtec.2020.08.027

2020.10

概要

The starting powder quality significantly influences the process window optimization and properties of parts fabricated by additive manufacturing. In this study, we investigate the influence of plasma rotating electrode process (PREP) parameters on the particle size distribution and microstructure of Ti-6Al-4V alloy powder. The martensite size in the powder decreased with increasing rotating electrode speed owing to the higher cooling rate. Numerical simulations using computational thermal fluid dynamics were found to be feasible for quantitative evaluation of the temperature variation, cooling rate, and powder size during PREP, and proves to be a new method to study the mechanism of powder formation. In addition, to reduce the experimental cost, a statistical model combining principal component analysis and the Monte Carlo methods was proposed to evaluate the relationships between PREP parameters and average powder diameter based on the limited collected experimental data. The proposed statistical model can also be applied in research fields where multivariable problems exist.

参考文献

[1] W. Ding, G. Chen, M. Qin, Y. He, X. Qu, Low-cost Ti powders for additive manufacturing treated by fluidized bed, Powder Technol. 350 (2019) 117–122. https://doi.org/10.1016/j.powtec.2019.03.042

[2] A.A. Kadyrov, V.Y. Frolov, B.A. Yushin, Numerical Simulation of a Plasma Jet with Several Electrodes Used in the Technology of Creating Powders for 3d Printers, 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia (2019) 808-811. https://doi: 10.1109/EIConRus.2019.8657308.

[3] G. Zeng, Z. Han, S. Liang, P. Zhang, X. Chen, P. Zhang, The applications and progress of manufacturing of metal parts by 3D printing technology, Materials China 33 (2014) 376-382. https://doi.org/10.7502/j.issn.1674-3962.2014.06.09

[4] G. Chen, Q. Zhou, S.Y. Zhao, J.O. Yin, P. Tan, Z.F. Li, Y. Ge, J. Wang, H.P. Tang, A pore morphological study of gas-atomized Ti-6Al-4V powders by scanning electron microscopy and synchrotron X-ray computed tomography, Powder Technol. 330 (2018) 425–430.

[5] J.M. Park, T. Na, H. Park, S. Yang, J. Kang, T.W. Lee, Preparation and characterization of spherical niobium silicide-based powder particles by electrode induction gas atomization, Mater. Lett. 243 (2019) 5–8. https://doi.org/10.1016/j.matlet.2019.01.155

[6] T.W. Na, K.B. Park, S.Y. Lee, S.M. Yang, J.W. Kang, T.W. Lee, J. M. Park, K. Park, H.K. Park, 2020. Preparation of spherical TaNbHfZrTi high-entropy alloy powders by a hydrogenation-dehydrogenation reaction and thermal plasma treatment, J. Alloys Compd. 817, 152757. https://doi.org/10.1016/j.jallcom.2019.152757

[7] A.A. Kadyrov, B.A. Yushin, V.Y. Frolov, Investigation of the Properties of a Two-Jet Arc Plasma Torch to Obtain a Metal Powder, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia (2020) 1024-1026. https://doi: 10.1109/EIConRus49466.2020.9039081.

[8] W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H.Miura, A review of powdered additive manufacturing techniques for Ti- 6Al-4V biomedical applications, Powder Technol. 331 (2018) 74-97. https://doi.org/10.1016/j.powtec.2018.03.010

[9] Q.B. Nguyen, M.L.S. Nai, Z. Zhu, C.N. Sun, J. Wei, W. Zhou, Characteristics of inconel powders for powder-bed additive manufacturing, Engineering, 3 (2017) 695-700. https://doi.org/10.1016/J.ENG.2017.05.012

[10] C. Meier, R. Weissbach, J. Weinberg, W.A. Wall, A.J. Hart, Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J. Mater. Process. Technol. 266 (2019) 484-501. https://doi.org/10.1016/j.jmatprotec.2018.10.037

[11] A.B. Spierings, N. Herres, G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyp. J. 17 (2011) 195-202. https://doi.org/10.1108/13552541111124770

[12] N. Minoru, M. Yasuhiro, K. Tomoaki, S. Jun, C. Akira, K. Ryohei, Microstructure dependence of compactibility of rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process, Mater. Trans. 38 (1997) 334–343. https://doi.org/10.2320/matertrans1989.38.334

[13] X. Shui, K. Yamanaka, M. Mori, Y. Nagata, A. Chiba, Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting, Mater. Sci. Eng. A 680 (2017) 239–248. https://doi.org/10.1016/j.msea.2016.10.059

[14] H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto, Y. Murakami, Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing, Int. J. Fatigue 117 (2018) 163–179. https://doi.org/10.1016/j.ijfatigue.2018.07.020

[15] S. Tammas-williams, P.J. Withers, I. Todd, P.B. Prangnell, Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 122 (2016) 72–76. https://doi.org/10.1016/j.scriptamat.2016.05.002

[16] F. Ahmed, U. Ali, D. Sarker, E. Marzbanrad, K. Choi, Y. Mahmoodkhani, E. Toyserkani, 2020. Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel. J. Mater. Process. Technol. 278, 116522. https://doi.org/10.1016/j.jmatprotec.2019.116522

[17] G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tang, A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 333 (2018) 38–46. https://doi.org/10.1016/j.powtec.2018.04.013

[18] G. Zeng, X. Mao, Y. Zhao, C. Huang, S. Liang, Z. Han, F. Yan, P. Zhang, Microstructures and Mechanical Properties of Hot Isostatic Pressed Parts of Ti- 6Al-4VELI Alloy Spherical Powders with Three Different Diameter Distributions, Rare Metal Materials and Engineering 46 (2017) 3197–3203. https://doi.org/10.1016/s1875-5372(18)30028-6.

[19] Y. Liu, X. Zhao, Y. Lai, Q. Wang, L. Lei, S. Liang, A brief introduction to the selective laser melting of Ti6Al4V powders by supreme-speed plasma rotating electrode process, Progress in Natural Science: Materials International 30 (2020) 94-99. https://doi.org/10.1016/j.pnsc.2019.12.004

[20] Y. Liu, S. Liang, Z. Han, J. Song, and Q. Wang, A novel model of calculating particle sizes in plasma rotating electrode process for superalloys, Powder Technol. 336 (2018) 406–414. https://doi.org/10.1016/j.powtec.2018.06.002

[21] M. Zdujić, D. Uskoković, Production of atomized metal and alloy powders by the rotating electrode process, Sov. Powder Metall. Met. Ceram. 29 (1990) 673–683. https://doi.org/10.1007/BF00795571

[22] J. Tang, Y. Nie, Q. Lei, Y. Li, Characteristics and atomization behavior of Ti-6Al- 4V powder produced by plasma rotating electrode process. Adv. Powder Technol. 30 (2019) 2330–2337. https://doi.org/10.1016/j.apt.2019.07.015

[23] A. Califice, F. Michel, G. Dislaire, E. Pirard, Influence of particle shape on size distribution measurements by 3D and 2D image analyses and laser diffraction, Powder Technol. 237 (2013) 67–75. https://doi.org/10.1016/j.powtec.2013.01.003

[24] M.N. Pons, H. Vivier, K. Belaroui, B. Bernard-Michel, F. Cordier, D. Oulhana, J.A. Dodds, Particle morphology: from visualisation to measurement. Powder Technol. 103 (1999) 44-57. https://doi.org/10.1016/S0032-5910(99)00023-6

[25] R Core Team, 2016. R: A Language and Environment for Statistical Computing. https://www.r-project.org/

[26] FLOW-3D® Version 11.2 [Computer software]. (2017). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com.

[27] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1981) 201–225. https://doi.org/10.1016/0021-9991(81)90145-5

[28] M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.H. Nadal, B. Wilthan, G. Pottlacher, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. International Journal of Thermophysics 27 (2006) 507–529. https://doi.org/10.1007/PL00021868

[29] R. Banerjee, A. Genç, P.C. Collins, H.L. Fraser, Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites. Metall. Mater. Trans. A 35 (2004) 2143–2152. https://doi.org/10.1007/s11661-004-0162-0

[30] H. Beladi, Q. Chao, G.S. Rohrer, Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy. Acta Mater. 80 (2014) 478–489. https://doi.org/10.1016/j.actamat.2014.06.064

[31] M. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, A. Chiba, Room-temperature ductility of Ti–6Al–4V alloy with α’ martensite microstructure. Mater. Sci. Eng. A 528 (2011) 1512–1520. https://doi.org/10.1016/j.msea.2010.10.070

[32] S. Cao, B. Zhang, Y. Yang, Q. Jia, L. Li, S. Xin, X. Wu, Q. Hu, C. Lim, On the role of cooling rate and temperature in forming twinned α’ martensite in Ti-6Al- 4V. Journal of Alloys and Compounds 813 (2020) 152247. https://doi.org/10.1016/j.jallcom.2019.152247

[33] B. Champagne, R. Angers, REP ATOMIZATION MECHANISMS. Powder Metall. Int. 16 (1984) 125–128.

[34] K. Isonishi, M. Tokizane, Production of Ti-alloy powder by plasma rotating electrode process. Tetsu-to Hagane. 12 (1990) 2108–2115. https://doi.org/ 10.4144/rpsj1986.37.215

[35] T. Kamiya, A. Kayano, Disintegration of viscous fluid in the ligament state purged from a rotating disk, J. Chem. Eng. Japan 4 (1971) 364–369. https://doi.org/10.1252/jcej.4.364

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る