リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phonon propagation in isotopic diamond superlattices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phonon propagation in isotopic diamond superlattices

Weng, H. K. 大阪大学

2021.08.16

概要

The out-of-plane thermal conductivity and elastic constant of epitaxial [100] C12/C13 superlattice diamonds with layer thicknesses of 1, 30, and 100 nm are evaluated by picosecond ultrasound spectroscopy. The measured elastic constants of the superlattices are equivalent to those of single-layer diamond thin films. This result confirms our success in synthesizing superlattice specimens with few defects at the interfaces. Therefore, the phonon transport behavior is governed by the mass difference, not the interfacial defects. The measured thermal conductivity of the superlattices is lower than that of a pure C12 isotope diamond thin film. We estimated the lattice thermal conductivity using the lattice dynamics calculation, attributing the lowered thermal conductivity to the decrease in the phonon group velocity in superlattices. We further consider the effect of mini-umklapp scattering in the superlattice, which explains the dependence of the thermal conductivity on the layer thickness. We reveal that the mini-umklapp scattering effect becomes significant only for an isotope diamond superlattice because of the high Debye temperature and large relative mass difference.

参考文献

[1] S. Froyen, D. M. Wood, and A. Zunger, Phys. Rev. B 37, 6893 (1988).

[2] D. Menzel, W. Koschinski, K. Dettmer, and J. Schoenes, Thin Solid Films 342, 312 (1999).

[3] H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).

[4] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[5] S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).

[6] T. Yao, Appl. Phys. Lett. 51, 1798 (1987).

[7] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, Phys. Rev.B 59, 8105 (1999).

[8] N. Nakamura, H. Ogi, T. Yasui, M. Fujii, and M. Hirao, Phys. Rev. Lett. 99, 035502 (2007).

[9] N. Nakamura, A. Uranishi, M. Wakita, H. Ogi, and M. Hirao, Jpn. J. Appl. Phys. 49, 07HB04 (2010).

[10] N. Nakamura, R. Yokomura, N. Takeuchi, D. Yamakado, and H. Ogi, Jpn. J. Appl. Phys. 58, 075504 (2019).

[11] M. C. Costello, D. A. Tossell, D. M. Reece, and C. J. Brierley, Diamond Relat. Mater. 3, 1137 (1994).

[12] H. Watanabe, C. E. Nebel, and S. Shikata, Science 324, 1425 (2009).

[13] T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor, Phys. Rev. B 42, 1104 (1990).

[14] C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, Phys. Rev. Lett. 53, 989 (1984).

[15] R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).

[16] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).

[17] O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, Phys. Rev. Lett. 93, 095501 (2004).

[18] A. Devos and R. Cote, Phys. Rev. B 70, 125208 (2004).

[19] H. Ogi, T. Shagawa, N. Nakamura, M. Hirao, H. Odaka, and N. Kihara, Phys. Rev.B 78, 134204 (2008).

[20] H. Ogi, T. Shagawa, N. Nakamura, M. Hirao, H. Odaka, and N. Kihara, Jpn. J. Appl. Phys. 48, 07GA01 (2009).

[21] H. K. Weng, A. Nagakubo, H. Watanabe, and H. Ogi, Jpn. J. Appl. Phys. 59, SKKA04 (2020).

[22] A. Nagakubo, S. Tsuboi, Y. Kabe, S. Matsuda, A. Koreeda, Y. Fujii, and H. Ogi, Appl. Phys. Lett. 114, 251905 (2019).

[23] H. Ogi, S. Iwagami, A. Nagakubo, T. Taniguchi, and T. Ono, Sensors Actuators, B 278, 15 (2019).

[24] S. I. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B 60, 2627 (1999).

[25] B. P. Pandey and B. Dayal, Solid State Commun. 11, 775 (1972).

[26] B. P. Pandey and B. Dayal, J. Phys. C 6, 2943 (1973).

[27] J. L. Warren, J. L. Yarnell, G. Dolling, and R. A. Cowley, Phys. Rev. 158, 805 (1967).

[28] R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, and T. R. Anthony, Phys. Rev.B 54, 3989 (1996).

[29] T. Yamanaka, S. Morimoto, and H. Kanda, Phys. Rev. B 49, 9341 (1994).

[30] R. G. Leisure, Ultrasonic Spectroscopy: Application in Con- densed Matter Physics and Material Science (Cambridge University Press, Cambridge, 2017), Chap. 3-2.

[31] A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phys. (NY) 15, 360 (1961).

[32] T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, Phys. Rev. B 62, 16578 (2000).

[33] E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1. (Academic, San Diego, 1985), p. 672.

[34] G. Tas and H. J. Maris, Phys. Rev.B 49, 15046 (1994).

[35] A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F. J. Garcia De Abajo, and N. F. Van Hulst, Sci. Adv. 5, eaav8965 (2019).

[36] A. J. Schmidt, X. Chen, and G. Chen, Rev. Sci. Instrum. 79, 114902 (2008).

[37] D. G. Onn, A. Witek, Y. Z. Qiu, T. R. Anthony, and W. F. Banholzer, Phys. Rev. Lett. 68, 2806 (1992).

[38] J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 47, 14850 (1993).

[39] S. Y. Ren and J. D. Dow, Phys. Rev B 25, 3750 (1982).

[40] J. Callaway, Phys. Rev. 113, 1046 (1959).

[41] C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, NJ, 2004), Chap. 5.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る