リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationship between Kidney Function and Subclinical Atherosclerosis Progression Evaluated by Coronary Artery Calcification.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationship between Kidney Function and Subclinical Atherosclerosis Progression Evaluated by Coronary Artery Calcification.

GANBAATAR Namuun 滋賀医科大学 DOI:10.5551/jat.63030

2021.10.22

概要

Aims:
The roles of urinary albumin, eGFRcystatin (eGFRcys), and eGFRcreatinine (eGFRcre) in the progression of coronary artery calcification (CAC) remain unclear. Therefore, the present study investigated the relationship between kidney function and CAC progression.
Methods:
A total of 760 Japanese men aged 40-79 years were enrolled in this population-based study. Kidney function was measured using eGFRcre, eGFRcys, and the urine albumin-to-creatinine ratio. CAC scores were calculated using the Agatston method. CAC progression was defined as an annual increase of >10 Agatston units (AU) among men with 0<CAC<100 AU at baseline, that of >10% among those with CAC ≥ 100 AU, and any progression for those with CAC=0 at baseline. The relative risk (RR) of CAC progression based on kidney function was assessed using a robust Poisson regression model.
Results:
The mean follow-up period was 4.9 years. CAC progression was detected in 45.8% of participants. Positive associations between CAC progression and albuminuria (>30mg/g) (RR: 1.29; 1.09 to 1.53; p=0.004) and low eGFRcys (<60ml/min/1.73m2) (RR: 1.27; 1.05 to 1.53; p=0.012) remained significant after adjustments for age, the follow-up time, and computerized tomography type. Following further adjustments for hypertension, diabetes mellitus, dyslipidemia, C-reactive protein, and lifestyle factors, CAC progression was associated with albuminuria (RR: 1.20; 1.01 to 1.43; p=0.04) and low eGFRcys (RR: 1.19; 0.99 to 1.43; p=0.066), but not with eGFRcre.
Conclusion:
CAC progression was associated with albuminuria; however, its relationship with eGFRcys was weakened by adjustments for risk factors.

関連論文

参考文献

1) Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Köttgen

A, Levey AS, Levin A: Evolving importance of kidney

disease: from subspecialty to global health burden. Lancet,

2013; 382: 158-169

2) Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA,

Fogo AB, Fox CS, Gansevoort RT, Heerspink HJL,

Jardine M, Kasiske B, Köttgen A, Kretzler M, Levey AS,

Luyckx VA, Mehta R, Moe O, Obrador G, Pannu N,

Parikh CR, Perkovic V, Pollock C, Stenvinkel P, Tuttle

KR, Wheeler DC, Eckardt KU; ISN Global Kidney

Health Summit participants: Global kidney health 2017

and beyond: a roadmap for closing gaps in care, research,

and policy. Lancet, 2017; 390: 1888-1917

3) Vidal-Petiot E, Greenlaw N, Kalra PR, Garcia-Moll X,

Tardif JC, Ford I, Zamorano J, Ferrari R, Tendera M, Fox

KM, Philippe Gabriel Steg PG; on behalf of the

CLARIFY investigators: Chronic Kidney Disease Has a

Graded Association with Death and Cardiovascular

Outcomes in Stable Coronary Artery Disease: An Analysis

of 21,911 Patients from the CLARIFY Registry. J Clin

Med, 2019; 9: 4

4) Gassett AJ, Sheppard L, McClelland RL, Olives C,

Kronmal R, Blaha MJ, Budoff M, Kaufman JD: Risk

Factors for Long Term Coronary Artery Calcium

Progression in the Multi Ethnic Study of Atherosclerosis.

J Am Heart Assoc, 2015; 4: e001726

5) Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar

TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP:

Chronic kidney disease and cardiovascular risk:

epidemiology, mechanisms, and prevention. Lancet, 2013;

382: 339-352

6) DeFilippis AP, Kramer HJ, Katz R, Wong ND, Bertoni

AG, Carr J, Budoff MJ, Blumenthal RS, Nasir K:

Association between coronary artery calcification

progression and microalbuminuria: the MESA study.

JACC Cardiovasc Imaging, 2010; 3: 595-604

7) Jassal SK, Chonchol M, Laughlin GA, Cummins KM,

Smits G, Kramer CK, Ix JH, Barrett-Connor E: Kidney

function and progression of coronary artery calcium in

community-dwelling older adults (from the Rancho

Bernardo Study). Am J Cardiol, 2012; 110: 1425-1433

8) Nakamura S, Ishibashi-Ueda H, Niizuma S, Yoshihara F,

Horio T, Kawano Y: Coronary calcification in patients

with chronic kidney disease and coronary artery disease.

Clin J Am Soc Nephro, 2009; 4: 1892-1900

9) Fox CS, Larson MG, Keyes MJ, Levy D, Clouse ME,

Culleton B, O’Donnell CJ: Kidney function is inversely

associated with coronary artery calcification in men and

women free of cardiovascular disease: the Framingham

Heart Study. Kidney Int, 2004; 66: 2017-2021

10) El Barzouhi A, Elias-Smale S, Dehghan A, VliegenthartProença R, Oudkerk M, Hofman A, Witteman JC: Renal

function is related to severity of coronary artery

calcification in elderly persons: the Rotterdam study. PloS

One, 2011; 6: e16738

11) Suh-Chiou C, Moysés RM, Bittencourt MS, Bensenor

IM, Lotufo PA: Chronic kidney disease and coronary

artery calcification in the Brazilian Longitudinal Study of

Adult Health (ELSA-Brasil). Clin Cardiol, 2017; 40:

1309-1315

12) Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey

J, Gray SR, Lyall DM, Cleland JG, Gill JMR, Jhund PS,

Pell J, Sattar N, Welsh P, Mark PB: Glomerular filtration

rate by differing measures, albuminuria and prediction of

cardiovascular disease, mortality and end-stage kidney

disease. Nat Med, 2019; 25: 1753-1760

13) Peralta CA, Shlipak MG, Judd S, Cushman M, McClellan

W, Zakai NA, Safford MM, Zhang X, Muntner P,

Warnock D: Detection of Chronic Kidney Disease With

Creatinine, Cystatin C, and Urine Albumin-to-Creatinine

Ratio and Association With Progression to End-Stage

Renal Disease and Mortality. JAMA, 2011; 305: 15451552

14) Kadota A, Miura K, Okamura T, Fujiyoshi A, Ohkubo T,

Kadowaki T, Takashima N, Hisamatsu T, Nakamura Y,

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

Kidney Function and CAC Progression

Kasagi F, Maegawa H, Kashiwagi A, Ueshima H; SESSA

Research Group; NIPPON DATA80/90 Research Group:

Carotid intima-media thickness and plaque in apparently

healthy Japanese individuals with an estimated 10-year

absolute risk of CAD death according to the Japan

Atherosclerosis Society (JAS) guidelines 2012: the Shiga

Epidemiological Study of Subclinical Atherosclerosis

(SESSA). J Atheroscler Thromb, 2013; 20: 755-766

15) Fujiyoshi A, Miura K, Ohkubo T, Kadowaki T, Kadowaki

S, Zaid M, Hisamatsu T, Sekikawa A, Budoff MJ, Liu K,

Ueshima H; SESSA Research Group; MESA Research

Group: Cross-sectional comparison of coronary artery

calcium scores between Caucasian men in the United

States and Japanese men in Japan: the multi-ethnic study

of atherosclerosis and the Shiga epidemiological study of

subclinical atherosclerosis. Am J Epidemiol, 2014; 180:

590-598

16) Tudor-Locke C, Giles-Corti B, Knuiman M, McCormack

G: Tracking of pedometer-determined physical activity in

adults who relocate: results from RESIDE. Int J Behav

Nutr Phys Act, 2008; 5: 39

17) Friedewald WT, Levy RI, Fredrickson DS: Estimation of

the concentration of low-density lipoprotein cholesterol

in plasma, without use of the preparative ultracentrifuge.

Clin Chem, 1972; 18: 499-502

18) Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito

H, Tominaga M, Oikawa S, Noda M, Kawamura T,

Sanke T, Namba M, Hashiramoto M, Sasahara T, Nishio

Y, Kuwa K, Ueki K, Takei I, Umemoto M, Murakami M,

Yamakado M, Yatomi Y, Ohashi H: International clinical

harmonization of glycated hemoglobin in Japan.

International clinical harmonization of glycated

hemoglobin in Japan: From Japan Diabetes Society to

National Glycohemoglobin Standardization Program

values. J Diabetes Investig, 2012; 3: 39-40

19) Sekikawa A, Mahajan H, Kadowaki S, Hisamatsu T,

Miyagawa N, Fujiyoshi A, Kadota A, Maegawa H, Murata

K, Miura K, Edmundowicz D, Ueshima H; SESSA

Research Group: Association of blood levels of marine

omega-3 fatty acids with coronary calcification and

calcium density in Japanese men. Eur J Clin Nutr, 2019;

73: 783-792

20) Kadota A, Okuda N, Ohkubo T, Okamura T, Nishi N,

Ueshima H, Okayama A, Miura K: The National

Integrated Project for Prospective Observation of Noncommunicable Disease and its Trends in the Aged 2010

(NIPPON DATA2010): Objectives, Design, and

Population Characteristics. J Epidemiol, 2018; 28 Suppl

3: S2-S9

21) Hisamatsu T, Miura K, Fujiyoshi A, Kadota A, Miyagawa

N, Satoh A, Zaid M, Yamamoto T, Horie M, Ueshima H;

SESSA Research Group: Serum magnesium, phosphorus,

and calcium levels and subclinical calcific aortic valve

disease: A population-based study. Atherosclerosis, 2018;

273: 145-152

22) Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S: GFR

Estimation Using Standardized Serum Cystatin C in

Japan. Am J Kidney Dis, 2013; 61: 197-203

23) Fujiyoshi A, Miura K, Ohkubo T, Miyagawa N, Saito Y,

Miyazawa I, Shiino A, Kadota A, Kadowaki S, Hisamatsu

T, Torii S, Takashima N, Tooyama I, Ueshima H:

Proteinuria and Reduced Estimated Glomerular Filtration

Rate are Independently Associated with Lower Cognitive

Abilities in Apparently Healthy Community-Dwelling

Elderly Men in Japan: A Cross-sectional Study. J

Epidemiol, 2020; 30: 244-252

24) Japanese Society of Nephrology; Essential points from

Evidence-based Clinical Practice Guidelines for Chronic

Kidney Disease 2018. Clin Exp Nephrol, 2018; 23: 1-15

25) Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR,

Viamonte M Jr, Detrano R: Quantification of coronary

artery calcium using ultrafast computed tomography. J

Am Coll Cardiol, 1990; 15: 827-832

26) Sekikawa A, Ueshima H, Kadowaki T, El-Saed A,

Okamura T, Takamiya T, Kashiwagi A, Edmundowicz D,

Murata K, Sutton-Tyrrell K, Maegawa H, Evans RW, Kita

Y, Kuller LH: Less subclinical atherosclerosis in Japanese

men in Japan than in White men in the United States in

the post-World War II birth cohort. Am J Epidemiol,

2007; 165: 617-624

27) Berry JD, Liu K, Folsom AR, Lewis CE, Carr JJ, Polak JF,

Shea S, Sidney S, O’Leary DH, Chan C, Lloyd-Jones

DM: Prevalence and progression of subclinical

atherosclerosis in younger adults with low short-term but

high lifetime estimated risk for cardiovascular disease: the

coronary artery risk development in young adults study

and multi-ethnic study of atherosclerosis. Circulation,

2009; 119: 382-389

28) Zou G: A modified poisson regression approach to

prospective studies with binary data. Am J Epidemiol,

2004; 159: 702-706

29) Kestenbaum BR, Adeney KL, de Boer IH, Ix JH, Shlipak

MG, Siscovick DS: Incidence and progression of coronary

calcification in chronic kidney disease: the Multi-Ethnic

Study of Atherosclerosis. Kidney Int, 2009; 76: 991-998

30) Sedaghat S, Hoorn EJ, Ikram MA, Koop-Nieuwelink C,

Kavousi M, Franco OH, van der Lugt A, Vernooij MW,

Bos D: Kidney Function and Arterial Calcification in

Major Vascular Beds. J Am Heart Assoc, 2019; 8:

e010930

31) Seliger SL, Salimi S, Pierre V, Giffuni J, Katzel L, Parsa A:

Microvascular endothelial dysfunction is associated with

albuminuria and CKD in older adults. BMC Nephrol,

2016; 17: 82

32) Garsen M, Rops AL, Rabelink TJ, Berden JH, van der

Vlag J: The role of heparanase and the endothelial

glycocalyx in the development of proteinuria. Nephrol

Dial Transplant, 2014; 29: 49-55

33) Malyszko J: Mechanism of endothelial dysfunction in

chronic kidney disease. Clin Chim Acta, 2010; 411:

1412-1420

34) Manabe S, Kataoka H, Mochizuki T, Iwadoh K, Ushio Y,

Kawachi K, Watanabe K, Watanabe S, Akihisa T, Makabe

S, Sato M, Iwasa N, Yoshida R, Sawara Y, Hanafusa N,

Tsuchiya K, Nitta K: Maximum Carotid Intima-Media

Thickness in Association with Renal Outcomes. J

Atheroscler Thromb, 2021; 28: 491-505

35) Li Y, Cui R, Liu K, Eshak ES, Cui M, Dong J, Imano H,

Muraki I, Kiyama M, Kitamura A, Okada T, Yamagishi K,

Umesawa M, Ohira T, Iso H; CIRCS investigators:

Relationship between Endothelial Dysfunction and

Prevalence of Chronic Kidney Disease: The Circulatory

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

Ganbaatar et al .

Risk in Communities Study (CIRCS). J Atheroscler

Thromb, 2021; 28: 622-629

36) Harada A, Ueshima H, Kinoshita Y, Miura K, Ohkubo T,

Asayama K, Ohashi Y; Japan Arteriosclerosis Longitudinal

Study Group: Absolute risk score for stroke, myocardial

infarction, and all cardiovascular disease: Japan

Arteriosclerosis Longitudinal Study. Hypertens Res, 2019;

42: 567-579

37) Song X, Li J, Hua Y, Wang C, Liu B, Liu C, Zhao Q,

Zhang Z, Fang X, Wu J: Chronic Kidney Disease is

Associated with Intracranial Artery Stenosis Distribution

in the Middle-Aged and Elderly Population. J Atheroscler

Thromb, 2020; 27: 245-254

38) Bundy JD, Chen J, Yang W, Budoff M, Go AS, Grunwald

JE, Kallem RR, Post WS, Reilly MP, Ricardo AC, Rosas

SE, Zhang X, He J; CRIC Study Investigators: Risk

factors for progression of coronary artery calcification in

patients with chronic kidney disease: The CRIC study.

Atherosclerosis, 2018; 271: 53-60

39) Hyun YY, Kim H, Oh KH, Ahn C, Park SK, Chae DW,

Oh YK, Choi KH, Han SH, Kim YH, Lee KB: eGFR and

coronary artery calcification in chronic kidney disease.

10

Eur J Clin Invest, 2019; 13: e13101

40) Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL,

Newman AB, Siscovick DS, Stehman-Breen C: Cystatin

C and the risk of death and cardiovascular events among

elderly persons. N Engl J Med, 2005; 352: 2049-2060

41) Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R,

Polkinghorne KR, Rothenbacher D, Sarnak MJ, Astor

BC, Coresh J, Levey AS, Gansevoort RT; CKD Prognosis

Consortium: Cystatin C versus Creatinine in

Determining Risk Based on Kidney Function. N Engl J

Med, 2013; 369: 932-943

42) Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C,

Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P,

Roderick P, Sairenchi T, Schöttker B, Shankar A, Shlipak

M, Tonelli M, Townend J, van Zuilen A, Yamagishi K,

Yamashita K, Gansevoort R, Sarnak M, Warnock DG,

Woodward M, Ärnlöv J; CKD Prognosis Consortium:

Estimated glomerular filtration rate and albuminuria for

prediction of cardiovascular outcomes: a collaborative

meta-analysis of individual participant data. Lancet

Diabetes Endocrinol, 2015; 3: 514-525

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

Kidney Function and CAC Progression

Supplemental Table 1. Odds ratios of the presence of CAC progression by kidney function according to albuminuria or low eGFR

in 760 men aged 40-79 years with a mean follow-up of 4.9 years in the SESSA Study

Albuminuria

Low eGFRcys

Low eGFRcre

Unadjusted OR

(95% CI)

Model 1 OR

(95% CI)

Model 2 OR

(95% CI)

Model 3 OR

(95% CI)

Model 4 OR

(95% CI)

1.74 (1.19 - 2.54)

2.10 (1.39 - 3.18)

1.27 (0.86 - 1.88)

1.69 (1.15 - 2.50)

1.73 (1.11 - 2.69)

1.07 (0.71 - 1.61)

1.70 (1.14 - 2.52)

1.60 (1.02 - 2.51)

1.03 (0.68 - 1.55)

1.32 (0.86 - 2.02)

1.55 (0.97 - 2.47)

0.97 (0.63 - 1.49)

1.52 (1.01 - 2.30)

1.56 (0.98 - 2.47)

0.99(0.65 - 1.52)

OR, odds ratio; 95% CI, 95% confidence interval;

Albuminuria described as > 30mg/g; Low eGFR by cystatin C described as < 60 ml/min/1.73m2; Low eGFR by creatinine described as < 60 ml/

min/1.73m2; A multivariable logistic regression analysis was used to estimate odds ratio with 95% CI; Model 1 was adjusted for age, follow up

period, CT type; Model 2 further adjusted by BMI, step counts, current-smoker, current-drinker; Model 3 was further adjusted for SBP, HDL-C,

LDL-C, logTG, HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4 was adjusted for Model 2 plus

hypertension, diabetes, dyslipidemia, log-CRP.

Supplemental Table 2. Multivariable adjusted odds ratios of CAC progression by kidney function according to mutually adjusted

albuminuria with low eGFRcys and that with low eGFRcre in 760 men aged 40-79 years with a mean

follow-up of 4.9 years in the SESSA Study

a) Albuminuria and low eGFRcys

Model 1

Model 2

Model 3

Model 4

b) Albuminuria and low eGFRcre

Model 1

Model 2

Model 3

Model 4

Albuminuria OR (95% CI)

Low eGFRcys OR (95% CI)

Low eGFRcre OR (95% CI)

1.62 (1.09 - 2.40)

1.64 (1.10 - 2.45)

1.29 (0.84 - 1.98)

1.48 (0.98 - 2.25)

1.63 (1.05 - 2.55)

1.52 (0.97 - 2.40)

1.52 (0.96 - 2.43)

1.52 (0.96 - 2.40)

1.69 (1.14 - 2.50)

1.70 (1.14 - 2.52)

1.32 (0.86 - 2.03)

1.52 (1.01 - 2.31)

1.02 (0.68 - 1.55)

0.99 (0.65 - 1.50)

0.96 (0.62 - 1.48)

0.97 (0.64 - 1.49)

OR, odds ratio; 95% CI, 95% confidence interval;

a) Both albuminuria and low eGFRcys included in the model; b) Both albuminuria and low eGFRcre included in the model; Albuminuria

described as > 30mg/g; Low eGFR by cystatin C described as < 60 ml/min/1.73m2. Low eGFR by creatinine described as < 60 ml/min/1.73m2. A

multivariable logistic regression analysis was used to estimate the odds ratio with 95% CI; Model 1 was adjusted for age, follow up period, CT type;

Model 2 further adjusted by BMI, step counts, current-smoker, current-drinker; Model 3 was further adjusted for SBP, HDL-C, LDL-C, logTG,

HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4 was adjusted for Model 2 plus hypertension, diabetes,

dyslipidemia, log-CRP.

Supplemental Table 3. Relative risk of CAC progression in 479 men, excluding those with CAC = 0 at baseline, according to

albuminuria or low eGFR (age 40-79 years with a mean follow-up of 4.9 years) in the SESSA Study

Albuminuria

Low eGFRcys

Low eGFRcre

Unadjusted RR

(95% CI)

Model 1 RR

(95% CI)

Model 2 RR

(95% CI)

Model 3 RR

(95% CI)

Model 4 RR

(95% CI)

1.12 (0.94 - 1.34)

1.32 (1.10 - 1.57)

1.06 (0.86 - 1.30)

1.12 (0.94 - 1.33)

1.21 (1.01 - 1.46)

1.01 (0.83 - 1.23)

1.14 (0.96 - 1.36)

1.19 (0.99 - 1.44)

1.02 (0.84 - 1.23)

1.07 (0.89 - 1.28)

1.17 (0.97 - 1.41)

1.01 (0.83 - 1.23)

1.12 (0.94 - 1.34)

1.19 (0.98 - 1.43)

1.00 (0.82 - 1.21)

RR, relative risk; 95% CI, 95% confidence interval; Albuminuria described as > 30mg/g. Low eGFR by cystatin C described as < 60 ml/

min/1.73m2. Low eGFR by creatinine described as < 60 ml/min/1.73m2. A robust Poisson regression model was used to estimate RR and 95% CI;

Model 1 adjusted for age, CT type; Model 2 further adjusted for BMI, step counts, current-smoker, current-drinker; Model 3 further adjusted for

SBP, HDL-C, LDL-C, log TG, HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4 adjusted for Model 2

plus hypertension, diabetes, dyslipidemia, log-CRP.

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

11

Ganbaatar et al .

Supplemental Table 4. Relative risk of CAC progression in 479 men, excluding those with CAC = 0 at baseline, according to

mutually adjusted low eGFRcys with albuminuria and low eGFRcre with albuminuria (age 40-79 years

with a mean follow-up of 4.9 years) in the SESSA Study

a) Albuminuria and low eGFRcys

Model 1

Model 2

Model 3

Model 4

b) Albuminuria and low eGFRcre

Model 1

Model 2

Model 3

Model 4

Albuminuria RR (95% CI)

Low eGFRcys RR (95% CI)

Low eGFRcre RR (95% CI)

1.10 (0.92 - 1.31)

1.12 (0.94 - 1.34)

1.05 (0.88 - 1.27)

1.11 (0.92 - 1.32)

1.20 (0.99 - 1.44)

1.17 (0.97 - 1.42)

1.16 (0.96 - 1.40)

1.18 (0.97 - 1.42)

1.12 (0.94 - 1.34)

1.14 (0.96 - 1.36)

1.07 (0.89 - 1.29)

1.13 (0.94 - 1.35)

1.00 (0.82 - 1.22)

1.00 (0.82 - 1.22)

1.00 (0.82 - 1.22)

0.99 (0.81 - 1.20)

RR, relative risk; 95% CI, 95% confidence interval; a) Both albuminuria and low eGFRcys included in the model; b) Both albuminuria and low

eGFRcre included in the model; Albuminuria described as > 30mg/g; Low eGFR by cystatin C described as < 60 ml/min/1.73m2. Low eGFR by

creatinine described as < 60 ml/min/1.73m2. A robust Poisson regression model was used to estimate RR and 95% CI; Model 1 adjusted for age,

CT type; Model 2 further adjusted for BMI, step counts, current-smoker, current-drinker; Model 3 further adjusted for SBP, HDL-C, LDL-C, log

TG, HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4 adjusted for Model 2 plus hypertension, diabetes,

dyslipidemia, log-CRP.

Supplemental Table 5. Relative risk of CAC progression in 595 men, excluding those with CAC > 100 at baseline, according to

albuminuria or low eGFR (age 40-79 years with a mean follow-up of 4.9 years) in the SESSA Study

Albuminuria

Low eGFRcys

Low eGFRcre

Unadjusted RR

(95% CI)

Model 1 RR

(95% CI)

Model 2 RR

(95% CI)

Model 3 RR

(95% CI)

Model 4 RR

(95% CI)

1.39 (1.09 - 1.76)

1.32 (1.01 - 1.73)

1.11 (0.84 - 1.47)

1.38 (1.09 - 1.75)

1.19 (0.90 - 1.58)

1.04 (0.78 - 1.37)

1.38 (1.09 - 1.75)

1.18 (0.89 - 1.56)

1.04 (0.78 - 1.38)

1.19 (0.93 - 1.52)

1.10 (0.84 - 1.45)

0.95 (0.72 - 1.26)

1.29 (1.02 - 1.64)

1.13 (0.86 - 1.49)

1.01 (0.77 - 1.34)

RR, relative risk; 95% CI, 95% confidence interval; Albuminuria described as > 30mg/g. Low eGFR by cystatin C described as < 60 ml/

min/1.73m2. Low eGFR by creatinine described as < 60 ml/min/1.73m2. A robust Poisson regression model was used to estimate RR and 95% CI;

Model 1 adjusted for age, follow up period, CT type; Model 2 further adjusted for BMI, step counts, current-smoker, current-drinker; Model 3

further adjusted for SBP, HDL-C, LDL-C, log TG, HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4

adjusted for Model 2 plus hypertension, diabetes, dyslipidemia, log-CRP.

12

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

Kidney Function and CAC Progression

Supplemental Table 6. Relative risk of CAC progression in 595 men, excluding those with CAC > 100 at baseline, with mutually

adjusted low eGFRcys and albuminuria and low eGFRcre and albuminuria (age 40-79 years with a mean

follow-up of 4.9 years) in the SESSA Study

a) Albuminuria and low eGFRcys

Model 1

Model 2

Model 3

Model 4

b) Albuminuria and low eGFRcre

Model 1

Model 2

Model 3

Model 4

Albuminuria RR

(95% CI)

Low eGFRcys RR

(95% CI)

Low eGFRcre RR

(95% CI)

1.37 (1.08 - 1.74)

1.37 (1.08 - 1.74)

1.19 (0.93 - 1.52)

1.29 (1.01 - 1.64)

1.17 (0.88 - 1.55)

1.16 (0.87 - 1.53)

1.09 (0.83 - 1.44)

1.12 (0.85 - 1.48)

1.38 (1.09 - 1.75)

1.38 (1.09 - 1.75)

1.19 (0.93 - 1.52)

1.29 (1.02 - 1.64)

1.02 (0.77 - 1.35)

1.02 (0.77 - 1.35)

0.95 (0.72 - 1.26)

1.01 (0.76 - 1.33)

RR, relative risk; 95% CI, 95% confidence interval; a) Both albuminuria and low eGFRcys included in the model; b) Both albuminuria and low

eGFRcre included in the model; Albuminuria described as > 30mg/g; Low eGFR by cystatin C described as < 60 ml/min/1.73m2. Low eGFR by

creatinine described as < 60 ml/min/1.73m2. A robust Poisson regression model was used to estimate RR and 95% CI; Model 1 adjusted for age,

follow up period, CT type; Model 2 further adjusted for BMI, step counts, current-smoker, current-drinker; Model 3 further adjusted for SBP,

HDL-C, LDL-C, log TG, HbA1C, hypertension medication, diabetes medication, lipid medication, log-CRP; Model 4 adjusted for Model 2 plus

hypertension, diabetes, dyslipidemia, log-CRP.

Advance Publication Journal of Atherosclerosis and Thrombosis

Accepted for publication: September 12, 2021 Published online: October 22, 2021

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る