リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-normal albuminuria is associated with subclinical atherosclerosis in male population with estimated glomerular filtration rate ?60 mL/min/1.73 m2: A cross-sectional study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-normal albuminuria is associated with subclinical atherosclerosis in male population with estimated glomerular filtration rate ?60 mL/min/1.73 m2: A cross-sectional study

木村 友恵 広島大学

2020.02.27

概要

Atherosclerosis is a state whereby the inside of an artery hardens and narrows [1]. Even without
symptoms in the early phase, atherosclerosis eventually causes severe cardiovascular disease
(CVD) such as coronary heart disease and stroke. Currently the impact of atherosclerosis is estimated at 422.7 million CVD events and 17.9 million CVD deaths worldwide [2], confirming its
consideration as a major health problem. According to previous studies, carotid atherosclerosis
correlates with not only coronary and cerebral atherosclerosis, but also incidence of CVD [3, 4].
Subsequently, carotid intima-media thickness (IMT) and the extent of atheromatous carotid
plaque measured by ultrasonography have become well-established methods for the evaluation
of atherosclerosis [5]. In the clinical setting, carotid duplex is mainly performed in subjects with
a risk factor for CVD, including smoking, obesity, hypertension, diabetes, and dyslipidemia [6].
Nonetheless many people still die of CVD; therefore, unconventional risk factors should also be
determined for the early evaluation of atherosclerosis.
Chronic kidney disease (CKD) has been well recognized as a risk factor for CVD alongside
conventional risk factors. In addition to decline in estimated glomerular filtration rate (eGFR)
to below 60 mL/min/1.73 m2, urinary albumin excretion has also been reported as a strong
and independent predictor of CVD mortality [7, 8]. Clinically, the urinary albumin-to-creatinine ratio (UACR) of a spot urine sample has been used to evaluate the daily urinary albumin
excretion, and UACR <30 mg/g has been defined as normal. Although normal albuminuria in
a population with eGFR �60 mL/min/1.73 m2 is classified in a low-risk group in the Kidney
Disease Improving Global Outcomes heat map [9], recent reports have revealed that, even
within normal levels of albuminuria, high-normal albuminuria has emerged as a risk factor for
the onset of CVD [8–10]. Additionally, a recent meta-analysis has reported that the cut-off
value of UACR that predicts CVD mortality is more than 10 mg/g [8, 9]. In terms of association between UACR and atherosclerosis, previous studies have demonstrated that high-normal
albuminuria correlates with IMT [11]. However, the effect of high-normal albuminuria on
subclinical atherosclerosis in individuals with eGFR �60 mL/min/1.73 m2 remains unknown.
These findings led us to the idea that determining the association between high-normal albuminuria and carotid atherosclerosis in a healthy population can help prevent a CVD event.
We conducted a cross-sectional study to investigate the associations between the normal
range of UACR and subclinical atherosclerosis in Japanese non-diabetic men with eGFR �60
mL/min/1.73 m2 by performing ultrasonographic assessment of carotid IMT and plaque number. We also compared the thickness of IMT and proportion of plaque number between the
populations with low- and high-normal UACR. Moreover, we employed a multivariate regression model to examine whether high-normal albuminuria predicts IMT and plaque number. ...

この論文で使われている画像

参考文献

1.

Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening

and extracellular matrix proteoglycans. Cardiovasc Res. 2008; 79(1):14–23. https://doi.org/10.1093/

cvr/cvn099 PMID: 18430750

2.

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, Regional, and National

Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017; 70(1):1–25.

https://doi.org/10.1016/j.jacc.2017.04.052 PMID: 28527533

PLOS ONE | https://doi.org/10.1371/journal.pone.0218290 August 1, 2019

8 / 10

High-normal albuminuria and subclinical atherosclerosis

3.

Salonen JT, Salonen R. Ultrasonographically assessed carotid morphology and the risk of coronary

heart disease. Arterioscler Thromb. 1991; 11(5):1245–1249. PMID: 1911709

4.

Grønholdt ML, Nordestgaard BG, Schroeder TV, Vorstrup S, Sillesen H. Ultrasonic echolucent carotid

plaques predict future strokes. Circulation. 2001; 104(1):68–73. https://doi.org/10.1161/hc2601.091704

PMID: 11435340

5.

Simon A, Gariepy J, Chironi G, Megnien JL, Levenson J. Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens. 2002; 20(2):159–169. PMID: 11821696

6.

Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study.

Lancet. 2012; 380(9844):807–814. https://doi.org/10.1016/S0140-6736(12)60572-8 PMID: 22717317

7.

Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001; 286

(4):421–426. https://doi.org/10.1001/jama.286.4.421 PMID: 11466120

8.

Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of

estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010; 375(9731):2073–2081. https://doi.

org/10.1016/S0140-6736(10)60674-5 PMID: 20483451

9.

Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int.

2011; 80(1):17–28. https://doi.org/10.1038/ki.2010.483 PMID: 21150873

10.

Tanaka F, Komi R, Makita S, Onoda T, Tanno K, Ohsawa M, et al. Low-grade albuminuria and incidence of cardiovascular disease and all-cause mortality in nondiabetic and normotensive individuals. J

Hypertens. 2016; 34(3):506–512; discussion 512. https://doi.org/10.1097/HJH.0000000000000809

PMID: 26820477

11.

Ma H, Lin H, Hofman A, Hu Y, Li X, He W, et al. Low-grade albuminuria is associated with carotid atherosclerosis in normotensive and euglycemic Chinese middle-aged and elderly adults: the Shanghai

Changfeng Study. Atherosclerosis. 2013; 228(1):237–242. https://doi.org/10.1016/j.atherosclerosis.

2013.02.007 PMID: 23453351

12.

Association AD. Erratum. Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical

Care in Diabetes-2016. Diabetes Care 2016; 39(Suppl. 1):S13–S22. Diabetes Care. 2016;39(9):1653.

13.

James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel

members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014; 311(5):507–520.

https://doi.org/10.1001/jama.2013.284427 PMID: 24352797

14.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model

assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7):412–419. PMID: 3899825

15.

Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR

from serum creatinine in Japan. Am J Kidney Dis. 2009; 53(6):982–992. https://doi.org/10.1053/j.ajkd.

2008.12.034 PMID: 19339088

16.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6):499–502.

PMID: 4337382

17.

National Cholesterol Education Program (NCEP) Expert Panel on Detection Ea, and Treatment of High

Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol

in Adults (Adult Treatment Panel III) final report. Circulation. 2002; 106(25):3143–3421. PMID:

12485966

18.

Okamura T, Tanaka H, Miyamatsu N, Hayakawa T, Kadowaki T, Kita Y, et al. The relationship between

serum total cholesterol and all-cause or cause-specific mortality in a 17.3-year study of a Japanese

cohort. Atherosclerosis. 2007; 190(1):216–223. https://doi.org/10.1016/j.atherosclerosis.2006.01.024

PMID: 16529754

19.

Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972; 15

(2):189–192. https://doi.org/10.1002/art.1780150209 PMID: 5027604

20.

Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a

direct measurement with ultrasound imaging. Circulation. 1986; 74(6):1399–1406. https://doi.org/10.

1161/01.cir.74.6.1399 PMID: 3536154

21.

Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CK, et al. Change in the estimated glomerular filtration rate over time and risk of all-cause mortality. Kidney Int. 2013; 83(4):684–691. https://

doi.org/10.1038/ki.2012.443 PMID: 23344477

PLOS ONE | https://doi.org/10.1371/journal.pone.0218290 August 1, 2019

9 / 10

High-normal albuminuria and subclinical atherosclerosis

22.

Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular

filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014; 311

(24):2518–2531. https://doi.org/10.1001/jama.2014.6634 PMID: 24892770

23.

Melsom T, Stefansson V, Schei J, Solbu M, Jenssen T, Wilsgaard T, et al. Association of Increasing

GFR with Change in Albuminuria in the General Population. Clin J Am Soc Nephrol. 2016; 11

(12):2186–2194. https://doi.org/10.2215/CJN.04940516 PMID: 27683625

24.

Yang GK, Maahs DM, Perkins BA, Cherney DZ. Renal hyperfiltration and systemic blood pressure in

patients with uncomplicated type 1 diabetes mellitus. PLoS One. 2013; 8(7):e68908. https://doi.org/10.

1371/journal.pone.0068908 PMID: 23861950

25.

Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular

Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol.

2017; 28(4):1023–1039. https://doi.org/10.1681/ASN.2016060666 PMID: 28143897

26.

Palatini P, Dorigatti F, Saladini F, Benetti E, Mos L, Mazzer A, et al. Factors associated with glomerular

hyperfiltration in the early stage of hypertension. Am J Hypertens. 2012; 25(9):1011–1016. https://doi.

org/10.1038/ajh.2012.73 PMID: 22673015

27.

Ogna A, Forni Ogna V, Bochud M, Guessous I, Paccaud F, Burnier M, et al. Association between obesity and glomerular hyperfiltration: the confounding effect of smoking and sodium and protein intakes.

Eur J Nutr. 2016; 55(3):1089–1097. https://doi.org/10.1007/s00394-015-0923-0 PMID: 25971845

28.

Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W, et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 2007; 71(8):816–821. https://doi.org/10.1038/sj.ki.

5002160 PMID: 17332732

29.

Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease. Transl Res. 2017; 183:14–

25. https://doi.org/10.1016/j.trsl.2016.12.004 PMID: 28025032

30.

Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis.

Nature. 2008; 451(7181):904–913. https://doi.org/10.1038/nature06796 PMID: 18288179

31.

Ballermann BJ, Stan RV. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol. 2007; 18(9):2432–2438. https://doi.org/10.1681/ASN.2007060687

PMID: 17724232

32.

Rabelink TJ, de Zeeuw D. The glycocalyx—linking albuminuria with renal and cardiovascular disease.

Nat Rev Nephrol. 2015; 11(11):667–676. https://doi.org/10.1038/nrneph.2015.162 PMID: 26460356

33.

Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM. Microalbuminuria is associated

with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes:

further evidence for a link between microalbuminuria and endothelial dysfunction—the Hoorn Study.

Kidney Int Suppl. 2004;(92):S42–44. https://doi.org/10.1111/j.1523-1755.2004.09211.x PMID:

15485416

34.

Cosson E, Pham I, Valensi P, Pariès J, Attali JR, Nitenberg A. Impaired coronary endothelium-dependent vasodilation is associated with microalbuminuria in patients with type 2 diabetes and angiographically normal coronary arteries. Diabetes Care. 2006; 29(1):107–112. https://doi.org/10.2337/diacare.29.

1.107 PMID: 16373905

35.

Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: Analysis of potential mechanisms. J Am Soc Nephrol. 2006; 17(8):2106–2111. https://doi.org/10.1681/ASN.2005121288

PMID: 16825333

36.

Naya T, Hosomi N, Ohyama H, Ichihara S, Ban CR, Takahashi T, et al. Smoking, fasting serum insulin,

and obesity are the predictors of carotid atherosclerosis in relatively young subjects. Angiology. 2007;

58(6):677–684. https://doi.org/10.1177/0003319707303589 PMID: 18216377

37.

Wasserman BA, Sharrett AR, Lai S, Gomes AS, Cushman M, Folsom AR, et al. Risk factor associations

with the presence of a lipid core in carotid plaque of asymptomatic individuals using high-resolution

MRI: the multi-ethnic study of atherosclerosis (MESA). Stroke. 2008; 39(2):329–335. https://doi.org/10.

1161/STROKEAHA.107.498634 PMID: 18174475

38.

Lorenz MW, Karbstein P, Markus HS, Sitzer M. High-sensitivity C-reactive protein is not associated with

carotid intima-media progression: the carotid atherosclerosis progression study. Stroke. 2007; 38

(6):1774–1779. https://doi.org/10.1161/STROKEAHA.106.476135 PMID: 17446427

39.

Elias-Smale SE, Kardys I, Oudkerk M, Hofman A, Witteman JC. C-reactive protein is related to extent

and progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study. Atherosclerosis. 2007; 195(2):e195–202. https://doi.org/10.1016/j.atherosclerosis.2007.07.006 PMID:

17714718

40.

Naresh CN, Hayen A, Weening A, Craig JC, Chadban SJ. Day-to-day variability in spot urine albumincreatinine ratio. Am J Kidney Dis. 2013; 62(6):1095–1101. https://doi.org/10.1053/j.ajkd.2013.06.016

PMID: 23958401

PLOS ONE | https://doi.org/10.1371/journal.pone.0218290 August 1, 2019

10 / 10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る