リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pointwise convergence problems and some sharp inequalities arising in quantum mechanics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pointwise convergence problems and some sharp inequalities arising in quantum mechanics

白木 尚武 埼玉大学 DOI:info:doi/10.24561/00019569

2021

概要

We are concerned three different themes strongly related to quantum mechanics by employing harmonic analytic approaches. The first chapter pertains to the pointwise convergence problem for the Schrödinger type operator, the so called Carleson's problem, initiated by the mathematical giant Lennart Carleson in 1980. He showed that some smoothness condition on the initial data is required for the solutions to the standard Schrödinger equation to converge to the initial data almost everywhere in R. While the one spatial dimensional case was completely understood in a very early stage, the higher dimensional case turns out to be extremely difficult. In 2016, Jean Bourgain finally provided a plausible necessary condition, then soon later, Xiumin Du, Larry Guth, Xiaochun Li and Ruixian Zhang proved that Bourgain's regularity threshold is essentially suffcient as well. Their proof contains state-of-the-art technologies in harmonic analysis, which also reflects the well-known connections among Carleson's problem and other major open problems in harmonic analysis, such as Stein's restriction conjecture and the Kakeya conjecture. Many variations of Carleson's problem are also concerned, for instance, convergence along generalized paths and refinements by measuring the corresponding divergence sets in a more precise sense than Lebesgue measure. Chu-hee Cho, Sanghyuk Lee and Ana Vargas considered the following two distinct generalized paths in one spatial dimensional case; (1) paths along lines generated by a given fractal set, and (2) path along a tangential line onto the hyperplane Rd⨉{0}. We extend their results from the standard Schrödinger equation to the fractional Schrödinger equation, which has been also studied actively because of its useful applications. By our novel approach, we prove that the Minkowski dimension of the given fractal set influences to the smoothness condition on the initial data for pointwise convergence in the situation of (1), and for (2), the Hölder exponent of the curve and the order of the fractional Schrödinger operator influences the smoothness condition of the initial data. We also consider the refined problem of estimating the size of the associated divergence sets in case (2).
In the second part of the thesis, we consider the Strichartz estimate for the Klein-Gordon operator which can somehow be considered to be the hybrid of Schrödinger and wave operators. Strichartz estimates are one of the most important results in harmonic analysis since they have very useful applications in non-linear PDE theory and have connection with Stein's restriction conjecture. In 2007, Damiano Foschi obtained the sharp Strichartz estimate for wave equation in some special cases and a complete characterization of extremisers. Here, sharp estimate means the estimate with the optimal constant. The latest extension of this result is due to Neal Bez, Chirs Jeavons and Tohru Ozawa who further discussed this subject in the context of the so-called null-form estimates. René Quilodrán and soon later Jeavons, simultaneously, naturally extended Foschi's argument from wave to the Klein-Gordon equation and obtained analogous results. Jeavons further proved an improved Strichartz estimate in five spatial dimensions. In this chapter, we take the philosophy of Bez-Jeavons-Ozawa and extend results due to Quilodrán and Jeavons to two different directions, which we call the wave regime and the non-wave regime. In the non-wave regime, we also obtained an improved Strichartz estimate in four spatial dimensions.
In the last chapter, Nelson's celebrated hypercontractivity inequality is concerned and a new perspective of supersolutions is provided. Jonathan Bennett and Bez have pursued a remarkable study of algebraic closure properties of supersolutions in their series of papers. For example, in 2009 they presented a new significantly simple proof of the sharp n-fold Young's convolution inequality and its inverse by combining the closure property and heat-flow monotonicity argument. The purpose of this chapter is to reprove the hypercontractivity inequality for the Ornstein-Uhlenbeck semigroup, another key object in quantum mechanics, by this technique and formally extend this result for far more abstract Markov semigroups which enjoy the diffusion property.

参考文献

[1] R. P. Agarwal, N. S. Barnett, S. S. Dragomir, Inequalities for beta and gamma

functions via some classical and new integral inequalities, J. Inequal. Appl. 5 (2000),

103–165.

[2] Y. Aoki, J. Bennett, N. Bez, S. Machihara, K. Matsuura, S. Shiraki, A supersolutions perspective on hypercontractivity, Ann. Mat. Pura Appl. 199 (2020), 2105–

2116.

[3] A. D. Bailey Some results in harmonic analysis related to poinwise convergence,

PhD thesis, University of Birmingham (2012).

[4] D. Bakry, Transformations de Riesz pour les semigroupes sym´etriques, S´eminaire

de Probabilit´es XIX, Lecture Notes in Math., Springer (1985), 145–174.

[5] D. Bakry, Etude

des transformations de Riesz dans les vari´et´es Riemanniennes `

courbure de Ricci minor´ee, S´eminaire de Probabilit´es XXI, Lecture Notes in Math.,

Springer (1987), 137–172.

[6] D. Bakry, F. Bolley, I. Gentil, Dimension dependent hypercontractivity for Gaussian

kernels, Probab. Theory Relat. Fields 154 (2012), 845–874.

[7] D. Bakry, M. Emery,

Diffusions hypercontractives, S´eminaire de Probabilit´es XIX,

Lecture Notes in Math., Springer (1985), 177–206.

[8] D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion operators. Grundlehren der mathematischen Wissenschaften 348, Springer (2014).

[9] J. A. Barcel´

o, J. Bennett, A. Carbery, K. M. Rogers, On the dimension of divergence

sets of dispersive equations, Math. Ann. 348 (2011), 599–622.

[10] F. Barthe, The Brunn–Minkowski theorem and related geometric and functional

inequalities, International Congress of Mathematicians. Vol. II, Eur. Math. Soc.,

urich (2006), 1529–1546.

[11] M. Beals, Self-spreading and strength of singularities for solutions to semilinear

wave equations, Ann. of Math. 118 (1983), 187–214

[12] W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159–182.

[13] W. Beckner, A generalized Poincar´e inequality for Gaussian measures, Proc. Amer.

Math. Soc. 105 (1989), 397–400.

61

[14] D. Beltran, L. Vega, Bilinear identities involving the k-plane transform and Fourier

extension operators, to appear in Proc. Roy. Soc. Edinburgh Sect. A.

[15] J. Bennett, Aspects of multilinear harmonic analysis related to transversality, Harmonic analysis and partial differential equations, Contemp. Math., 612, Amer.

Math. Soc., Providence, RI, (2014), 1–28

[16] J. Bennett, N. Bez, Closure properties of solutions to heat inequalities, J. Geom.

Anal. 19 (2009), 584–600.

[17] J. Bennett, N. Bez, Generating monotone quantities for the heat equation, J. Reine

Angew. Math. 756 (2019), 37–63.

[18] J. Bennett, N. Bez, A. Carbery, D. Hundertmark, Heat-flow monotonicity of

Strichartz norms, Anal. PDE 2 (2009), 147–158.

[19] J. Bennett, N. Bez, M. Iliopoulou, Flow monotonicity and Strichartz inequalities,

Int. Math. Res. Not. IMRN (2015), 9415–9437.

[20] J. Bennett, N. Bez, C. Jeavons, and N. Pattakos, On sharp bilinear Strichartz

estimates of Ozawa–Tsutsumi type, J. Math. Soc. Japan 69 (2017), 459–476.

[21] J. Bennett, N. Bez, T. C. Flock, S. Guti´errez, and M. Iliopoulou, A sharp k-plane

Strichartz inequality for the Schr¨

odinger equation, Trans. Amer. Math. Soc. 370

(2018), 5617–5633.

[22] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2007), 1343–1415.

[23] J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), 261–302.

[24] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2007), 1343–1415.

[25] J. Bennett, M. Iliopoulou, A multilinear Fourier extension identity on Rd , Math.

Res. Lett. 25 (2018), 1089–1108.

[26] J. Bennett, S. Nakamura, Tomography bounds for the Fourier extension operator

and applications, to appear in Math. Ann.

[27] J. Bennett, K. M. Rogers, On the size of divergence sets for the Schr¨

odinger equation

with radial data, Indiana Univ. Math. J. 61 (2012), 1–13.

[28] N. Bez, K. M. Rogers, A sharp Strichartz estimate for the wave equation with data

in the energy space, J. Eur. Math. Soc. 15 (2013), 805–823.

[29] N. Bez, C. Jeavons, A sharp Sobolev–Strichartz estimate for the wave equation,

Electron. Res. Announc. Math. Sci. 22 (2015), 46–54.

[30] N. Bez, C. Jeavons, T. Ozawa, Some sharp bilinear space-time estimates for the

wave equation, Mathematika 62 (2016), 719–737.

[31] A. Bonami, Etude

des coefficients Fourier des fonctiones de Lp (G), Ann. Inst.

Fourier 20 (1970), 335–402.

62

[32] C. Borell, Positivity improving operators and hypercontractivity, Math. Z. 180

(1982), 225–234.

[33] J. Bourgain, A remark on Schr¨

odinger operators, Israel J. Math. 77 (1992), 1–16.

[34] J. Bourgain, Estimates for cone multipliers, Geometric Aspects of Functional Analysis, Oper. Theory Adv. Appl. 77, Birkh¨auser (1995), 41–60.

[35] J. Bourgain, On the Schr¨

odinger maximal function in higher dimension, Tr. Mat.

Inst. Steklova 280 (2013), 46–60.

[36] J. Bourgain, A note on the Schr¨

odinger maximal function, J. Anal. Math. 130

(2016), 393–396.

[37] J, Bourgain, L. Guth, Bounds on oscillatory integral operators based on multilinear

estimates, Geom. Funct. Anal. 21 (2011), 1239–1295.

[38] E. Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. 16

(2009), 3127–3145.

[39] E. Carneiro, D. Oliveira e Silva, M. Sousa, Extremizers for Fourier restriction on

hyperboloids, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 36 (2019), 389–415.

[40] E. Carneiro, D. Oliveira e Silva, M. Sousa, B. Stovall, Extremizers for adjoint

Fourier restriction on hyperboloids: the higher dimensional case, arXiv:1809.05

[41] E. A. Carlen, E. H. Lieb, M. Loss, A sharp analog of Young’s inequality on S N and

related entropy inequalities, J. Geom. Anal. 14 (2004), 487–520.

[42] E. A. Carlen, E. H. Lieb, Optimal hypercontractivity for Fermi fields and related

non-commutative integration inequalities, Commun. Math. Phys. 155 (1993), 27–

46.

[43] L. Carleson, Some analytic problems related to statistical mechanics, In: Euclidean

harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture

Notes in Math. 779 (1980), 5–45.

[44] C. H. Cho, H. Ko, A note on maximal estimates of generalized Schr¨

odinger equation,

arXiv:1809.03246.

[45] C. H. Cho, Y. Koh, I. Seo, On inhomogeneous Strichartz estimates for fractional

Schr¨

odinger equations and their applications, Discrete Contin. Dyn. Syst. 36 (2016),

1905–1926.

[46] C. H. Cho, S. Lee, Dimension of divergence sets for the pointwise convergence of

the Schr¨

odinger equation, J. Math. Anal. Appl. 411 (2014), 254–260.

[47] Y. Cho, S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math.

J. 62 (2013), 991–1020.

[48] C. H. Cho, S. Lee, A. Vargas, Problems on pointwise convergence of solutions to

the Schr¨

odinger equation, J. Fourier Anal. Appl. 18 (2012), 972–994.

[49] C. H. Cho, S. Shiraki, Pointwise convergence along a tangential curve for the fractional Schr¨

odinger equation, to appear in Ann. Acad. Sci. Fenn. Math.

63

[50] P. Constantin, J.-C. Saut, Local smoothing properties of dispersive equations, J.

Amer. Math. Soc. 1 (1988), 413–439.

[51] M. G. Cowling, Pointwise behavior of solutions to Schr¨

odinger equations, Harmonic

Analysis (Cortona, 1982), Lecture Notes in Math. 992 (1983), 83–90.

[52] B. E. J. Dahlberg, C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schr¨

odinger equation. In: Harmonic analysis (Minneapolis, Minn.,

1981), Lecture Notes in Math. 908 (1982), 205–209.

[53] E. B. Davies, L. Gross, B. Simon. Hypercontractivity: a bibliographic review, Ideas

and methods in quantum and statistical physics (Oslo, 1988)(1992), 370–389.

[54] C. Demeter, S. Guo, Schr¨

odinger maximal function estimates via the pseudoconformal transformation, arXiv:1608.07640v1.

[55] Y. Ding, Y. Niu, Convergence of solutions of general dispersive equations along

curve, Chin. Ann. Math. Ser. B 40 (2019), 363–388.

[56] X. Du, L. Guth, X. Li, A sharp Schr¨

odinger maximal estimate in R2 , Ann. of Math.

186 (2017), 607–640.

[57] X. Du, R. Zhang, Sharp L2 estimate of Schr¨

odinger maximal function in higher

dimensions, Ann. of Math. 189 (2019), 837–861.

[58] X. Du, L. Guth, X. Li, R. Zhang, Pointwise convergence of Schr¨

odinger solutions

and multilinear refined Strichartz estimates Forum Math. Sigma 6 (2018), e14, 18

pp.

[59] P. Federbush, Partially Alternate Derivation of a Result of Nelson, Journal of Mathematical Physics 10 (1969), 50–52.

[60] D. Foschi, On an endpoint case of the Klainerman–Machedon estimates, Comm.

Partial Differential Equations 25 (2000), 1537–1547.

[61] D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. 9 (2007),

739–774.

[62] D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave

equations, Ann. Sci. Ecole Norm. Sup. 33 (2000), 211–274.

[63] D. Foschi, D. Oliveira e Silva, Some recent progress in sharp Fourier restriction

theory, Anal. Math. 43 (2017), 241–265

[64] J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory

Adv. Appl., 78, Birkh¨

auser, Basel (1995), 153–160.

[65] J. Glimm, Boson fields with nonlinear selfinteraction in two dimensions, Commun.

math. Phys. 8 (1968), 12–25.

[66] L. Gross, Existence and uniqueness of physical ground states, J. Functional Analysis

10 (1972), 52–109.

[67] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061–1083.

64

[68] L. Gross, Hypercontractivity, logarithmic Sobolev inequalities, and applications: a

survey of surveys, Diffusion, quantum theory, and radically elementary mathematics, Math. Notes 47, Princeton Univ. Press (2006), 45–73.

[69] F. Guerra, Euclidean Field Theory, arXiv:math-ph/0510087.

[70] F. Guerra, L. Rosen, B. Simon, Nelson’s symmetry and the infinite volume behavior

of the vacuum in P (φ)2 , Comm. Math. Phys. 27 (1972), 10–22.

[71] B. Guo, Z. Huo, Global well-posedness for the fractional nonlinear Schr¨

odinger

equation, Comm. Partial Differential Equations 36 (2011), 247–255.

[72] Z. Guo, L. Li, K. Nakanishi, L. Yan, On the boundary Strichartz estimates for wave

and Schr¨

odinger equations, J. Differential Equations 265 (2018), 5656–5675.

[73] Z. Guo, Y. Wang, Improved Strichartz estimates for a class of dispersive equations in

the radial case and their applications to nonlinear Schr¨

odinger and wave equations,

J. Anal. Math. 124 (2014), 1–38.

[74] L. Guth, The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture, Acta Math. 205 (2010), 263–286.

[75] L. Guth, A short proof of the multilinear Kakeya inequality, Math. Proc. Cambridge

Philos. Soc. 158 (2015), 147–153.

[76] E. Gwynne Functional Inequalities for Gaussian and Log-Concave Probability Measures, PhD thesis, Northwestern University (2013).

[77] E. Gwynne, E. P. Hsu, On Beckner’s inequality for Gaussian measures, Elem. Math.

70 (2015), 33–38.

[78] R. Høegh-Krohn, B. Simon, Hypercontractive semigroups and two dimensional selfcoupled Bose fields, J. Functional Analysis 9 (1972), 121–180.

[79] Y. Hong, Y. Sire, On fractional Schr¨

odinger equations in Sobolev spaces, Commun.

Pure Appl. Anal. 14 (2015), 2265–2282.

[80] Y. Hu, A unified approach to several inequalities for Gaussian and diffusion measures, S´eminaire de Probabilit´es XXXIV. Lecture Notes in Math. 1729, Springer

(2000), 329–335.

[81] Y. Hu, Analysis on Gaussian spaces, World Scientific Publishing Co. (2017).

[82] D. Hundertmark, V. Zharnitsky, On sharp Strichartz inequalities in low dimensions,

Int. Math. Res. Not. (2006), Art. ID 34080, 18 pp.

[83] A. D. Ionescu, F. Pusateri, Nonlinear fractional Schr¨

odinger equations in one dimension, J. Funct. Anal. 266 (2014), 139–176.

[84] C. Jeavons, A sharp bilinear estimate for the Klein–Gordon equation in arbitrary

space-time dimensions, Differential Integral Equations 27 (2014), 137–156.

[85] C. Jeavons, Optimal constants and maximising functions for Strichartz inequalities,

PhD thesis, University of Birmingham (2015).

65

[86] Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl.

387 (2012), 857–861.

[87] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–

980.

[88] C. E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive

equations, Indiana Univ. Math. J. 40 (1991), 33–69.

[89] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local

existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268.

[90] S. Klainerman and M. Machedon, Remark on Strichartz-type inequalities. With

appendices by Jean Bourgain and Daniel Tataru. Internat. Math. Res. Notices 5

(1996), 201–220.

[91] S. Klainerman and M. Machedon, On the regularity properties of a model problem

related to wave maps, Duke Math. J. 87 (1997), 553–589

[92] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of

wave maps type, Comm. Part. Dif. Eq. 22 (1997), 901–918.

[93] S. Klainerman and D. Tataru, On the optimal regularity for the Yang–Mills equations in R4+1 , J. Amer. Math. Soc. 12 (1999), 93–116.

[94] M. Kunze, On the existence of a maximizer for the Strichartz inequality, Comm.

Math. Phys. 243 (2003), 137–162.

[95] N. Laskin, Fractional quantum mechanics and L´evy path integrals, Phys. Lett. A

268 (2000), 298–305.

[96] N. Laskin, Fractional Schr¨

odinger equation, Phys. Rev. E 66 (2002), 056108.

[97] S. Lee, On pointwise convergence of the solutions to Schr¨

odinger equations in R2 ,

Int. Math. Res. Not. (2006), 1–21.

[98] S. Lee, Bilinear restriction estimates for surfaces with curvatures of different signs,

Trans. Amer. Math. Soc. 358 (2006), 3511–3533.

[99] S. Lee, K. Rogers, A. Vargas, Sharp null form estimates for the wave equation in

R3+1 , Int. Math. Res. Not. IMRN 2008, Art. ID rnn 096, 18 pp.

[100] S. Lee, K. Rogers, The Schr¨

odinger equation along curves and the quantum harmonic oscillator, Adv. Math. 229 (2012), 1359–1379.

[101] S. Lee, A. Vargas, Sharp null form estimates for the wave equation, Amer. J. Math.

130 (2008), 1279–1326.

[102] M. Ledoux, The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse

Math. IX (2000), 305–366.

[103] M. Ledoux, Remarks on Gaussian noise stability, Brascamp–Lieb and Slepian inequalities, Geometric aspects of functional analysis, Lecture Notes in Math. 2116,

Springer (2014), 309–333.

66

[104] M. Ledoux, Heat flows, geometric and functional inequalities, Proceedings of the

International Congress of Mathematicians, Seoul (2014), Vol. IV, 117–135.

[105] R. Luc`

a, K. M. Rogers, An improved necessary condition for the Schr¨

odinger maximal estimate, arXiv:1506.05325.

[106] R. Luc`

a, K. M. Rogers, Coherence on fractals versus pointwise convergence for the

Schr¨

odinger equation, Comm. Math. Phys. 351 (2017), 341–359.

[107] R. Luc`

a, K. M. Rogers, A note on pointwise convergence for the Schr¨

odinger

equation, Math. Proc. Cambridge Philos. Soc. 166 (2019), 209–218.

[108] R. Luc`

a, K. M. Rogers, Average decay of the Fourier transform of measures with

applications, J. Eur. Math. Soc. (JEMS) 21 (2019), 465–506.

[109] J. Matkowski, The converse of the H¨

older inequality and its generalizations, Studia

Math. 109 (1994), 171–182.

[110] P. Mattila, Geometry of Sets and Measures in Eucldean Spaces, Fractals and Rectifiability, Cambridge Univ. Press, Cambridge (1995).

[111] A. Montanaro, Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys. 53 (2012), 122206.

[112] E. Mossel, R. O’Donnell, O. Regev, J. E. Steif, B. Sudakov, Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami–Beckner

inequality, Israel J. Math. 154 (2006), 299–336.

[113] E. Mossel , K. Oleszkiewicz, A. Sen, On reverse hypercontractivity, Geom. Funct.

Anal. 23, (2013), 1062–1097.

[114] A. Moyua, A. Vargas, L. Vega, Schr¨

odinger maximal function and restriction properties of the Fourier transform, Internat. Math. Res. Notices 1996, 793–815.

[115] A. Moyua, A. Vargas, L. Vega, Restriction theorems and maximal operators related

to oscillatory integrals in R3 , Duke Math. J. 96 (1999), 547–574.

[116] K. Nakanishi, Energy scattering for nonlinear Klein–Gordon and Schr¨

odinger

equations in spatial dimensions 1 and 2, J. Funct. Anal. 169 (1999), 201–225.

[117] E. Nelson, A quartic interaction in two dimensions, in Mathematical Theory of

Elementary Particles, (R. Goodman and I. Segal. eds. ) M.I.T. Press. Cambridge.

fass. (1966), 69–73.

[118] E. Nelson, Construction of quantum fields from Markov fields, J. Funct. Anal. 12

(1973), 97–112.

[119] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211–227.

[120] B. Pausader, The cubic fourth-order Schr¨

odinger equation, J. Funct. Anal. 256

(2009), 2473–2517.

[121] K. M. Rogers, P. Villarroya, Sharp estimates for maximal operators associated to

the wave equation, Ark. Mat. 46 (2008),143–151.

67

[122] R. O’Donnell, Social choice, computational complexity, Gaussian geometry, and

Boolean functions, Proceedings of the International Congress of Mathematicians

2014, Volume IV, 633–658.

[123] T. Ozawa, K. Rogers, A sharp bilinear estimate for the Klein–Gordon equation in

R1+1 , Int. Math. Res. Not. (2014) 1367–1378.

[124] T. Ozawa, Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear

Schr¨

odinger equations, Differential Integral Equations 11 (1998), 201–222

[125] F. Planchon, L. Vega, Bilinear virial identities and applications, Ann. Sci. Ec.

Norm. Sup´er. 42 (2009), 261–290.

[126] R. Quilodr´

an, Nonexistence of extremals for the adjoint restriction inequality on

the hyperboloid, J. Anal. Math. 125 (2015), 37–70.

[127] I. E. Segal, Tensor algebras over Hilbert spaces, Trans. Amer. Math. Sot. 81 (1956),

106–134.

[128] S. Selberg, Almost optimal local well-posedness of the Maxwell–Klein–Gordon equations in 1 + 4 dimensions, Commun. PDE 27 (2002), 1183–1227.

[129] S. Selberg, A. Tesfahun, Finite-energy global well-posedness of the Maxwell–Klein–

Gordon system in Lorenz gauge, Commun. Partial Differ. Equ. 35 (2010), 1029–

1057.

[130] B. Simon, Best constants in some operator smoothness estimates, J. Funct. Anal.

107 (1992), 66–71.

[131] B. Simon, Chapter Three. Ed Nelson’s Work in Quantum Theory, In Diffusion,

Quantum Theory, and Radically Elementary Mathematics (2006), 75–94.

[132] S. Shiraki, Pointwise convergence along restricted directions for the fractional

Schr¨

odinger equation, J. Fourier Anal. Appl. 26 (2020), 12 pp.

[133] P. Sj¨

ogren, P. Sj¨

olin, Convergence properties for the time dependent Schr¨

odinger

equation, Ann. Acad. Sci. Fenn. A I Math. 14 (1989), 13–25.

[134] P. Sj¨

olin, Regularity of solutions to the Schr¨

odinger equation, Duke Math. J. 55

(1987), 699–715.

[135] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton (1993).

[136] T. Tao, Endpoint bilinear restriction theorems for the cone, and some sharp null

form estimates, Math. Z. 238 (2001), 215–268.

[137] T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal.

13 (2003), 1359–1384.

[138] T. Tao, Sharp bounds for multilinear curved Kakeya, restriction and oscillatory

integral estimates away from the endpoint, Mathematika 66 (2020), 517–576.

[139] T. Tao, A. Vargas, A bilinear approach to cone multipliers. I. Restriction estimates,

Geom. Funct. Anal. 10 (2000), 185–215.

68

[140] T. Tao, A. Vargas, A bilinear approach to cone multipliers. II. Applications, Geom.

Funct. Anal. 10 (2000), 216–258.

[141] T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya

conjectures, J. Amer. Math. Soc. 11 (1998), 967–1000.

[142] D. Tataru, Null form estimates for second order hyperbolic operators with rough

coefficients, Harmonic analysis at Mount Holyoke, 383–409.

[143] L. Vega, Schr¨

odinger equations: pointwise convergence to the initial data, Proc.

Amer. Math. Soc. 102 (1988), 874–878.

[144] B. G. Walther, Maximal estimates for oscillatory integrals with concave phase,

Contemp. Math. 189 (1995), 485–495.

[145] B. G. Walther, Some Lp (L∞ )-and L2 (L2 )-estimates for oscillatory Fourier transforms, Analysis of divergence (Orono, ME, 1997), 213–231.

[146] T. Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. 153 (2001),

661–698.

[147] D. Zubrini´

c, Singular sets of Sobolev functions, C. R. Math. Acad. Sci. Paris 334

(2002), 539–544.

69

...

参考文献をもっと見る