リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120

Nagao, Ryo Kato, Koji Hamaguchi, Tasuku Ueno, Yoshifumi Tsuboshita, Naoki Shimizu, Shota Furutani, Miyu Ehira, Shigeki Nakajima, Yoshiki Kawakami, Keisuke Suzuki, Takehiro Dohmae, Naoshi Akimoto, Seiji Yonekura, Koji Shen, Jian-Ren 神戸大学

2023.02.17

概要

Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions. The cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, their binding property and functional roles in PSI are still missing. We analyzed a cryo-electron microscopy structure of a PSI-IsiA supercomplex isolated from Anabaena grown under an iron-deficient condition. The PSI-IsiA structure contains six IsiA subunits associated with the PsaA side of a PSI core monomer. Three of the six IsiA subunits were identified as IsiA1 and IsiA2. The PSI-IsiA structure lacks a PsaL subunit; instead, a C-terminal domain of IsiA2 occupies the position of PsaL, which inhibits the oligomerization of PSI, leading to the formation of a PSI monomer. Furthermore, excitation-energy transfer from IsiAs to PSI appeared with a time constant of 55 ps. These findings provide insights into both the molecular assembly of the Anabaena IsiA family and the functional roles of IsiAs.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

Blankenship, R. E. Molecular Mechanisms of Photosynthesis. 3rd edn

(Wiley-Blackwell, 2021).

Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure

of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature

473, 55–60 (2011).

Shen, J.-R. The structure of photosystem II and the mechanism of

water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66,

23–48 (2015).

Fromme, P., Jordan, P. & Krauß, N. Structure of photosystem I.

Biochim. Biophys. Acta Bioenergy 1507, 5–31 (2001).

Hippler, M. & Nelson, N. The plasticity of photosystem I. Plant Cell

Physiol. 62, 1073–1081 (2021).

11

Article

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Shen, J.-R. in Macromolecular Protein Complexes IV. Subcellular

Biochemistry (eds Harris, J. R. & Marles-Wright, J.) 351–377

(Springer, 2022).

Jordan, P. et al. Three-dimensional structure of cyanobacterial

photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N.

Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenergy 1859,

645–654 (2018).

Dobson, Z. et al. The structure of photosystem I from a high-lighttolerant cyanobacteria. eLife 10, e67518 (2021).

Nagao, R. Handbook of Cyanobacterial PSI Structures. [Kindle edition]. https://www.amazon.co.jp/Handbook-Cyanobacterial-PSIStructures-English-ebook/dp/B09Z8R7B4K (2022).

Kato, K. et al. Structure of a cyanobacterial photosystem I tetramer

revealed by cryo-electron microscopy. Nat. Commun. 10,

4929 (2019).

Zheng, L. et al. Structural and functional insights into the tetrameric

photosystem I from heterocyst-forming cyanobacteria. Nat. Plants

5, 1087–1097 (2019).

Chen, M. et al. Distinct structural modulation of photosystem I and

lipid environment stabilizes its tetrameric assembly. Nat. Plants 6,

314–320 (2020).

Semchonok, D. A. et al. Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium. Plant Commun.

3, 100248 (2022).

Watanabe, M., Kubota, H., Wada, H., Narikawa, R. & Ikeuchi, M.

Novel supercomplex organization of photosystem I in Anabaena

and Cyanophora paradoxa. Plant Cell Physiol. 52, 162–168 (2011).

Li, M. et al. Physiological and evolutionary implications of tetrameric

photosystem I in cyanobacteria. Nat. Plants 5, 1309–1319 (2019).

Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of

iron stress in phytoplankton. Ann. Rev. Mar. Sci. 5, 217–246 (2013).

Laudenbach, D. E. & Straus, N. A. Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J. Bacteriol. 170,

5018–5026 (1988).

Burnap, R. L., Troyan, T. & Sherman, L. A. The highly abundant

chlorophyll-protein complex of iron-deficient Synechococcus sp.

PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol. 103,

893–902 (1993).

Jia, A., Zheng, Y., Chen, H. & Wang, Q. Regulation and functional

complexity of the chlorophyll-binding protein IsiA. Front. Microbiol.

12, 774107 (2021).

Bibby, T. S., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743–745 (2001).

Boekema, E. J. et al. A giant chlorophyll-protein complex induced

by iron deficiency in cyanobacteria. Nature 412, 745–748 (2001).

Toporik, H., Li, J., Williams, D., Chiu, P.-L. & Mazor, Y. The structure of

the stress-induced photosystem I-IsiA antenna supercomplex. Nat.

Struct. Mol. Biol. 26, 443–449 (2019).

Cao, P. et al. Structural basis for energy and electron transfer of the

photosystem I-IsiA-flavodoxin supercomplex. Nat. Plants 6,

167–176 (2020).

Akita, F. et al. Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Commun. Biol. 3,

232 (2020).

Andrizhiyevskaya, E. G. et al. Spectroscopic properties of PSI-IsiA

supercomplexes from the cyanobacterium Synechococcus PCC

7942. Biochim. Biophys. Acta Bioenergy 1556, 265–272 (2002).

Melkozernov, A. N., Bibby, T. S., Lin, S., Barber, J. & Blankenship, R.

E. Time-resolved absorption and emission show that the CP43’

antenna ring of iron-stressed Synechocystis sp. PCC6803 is

Nature Communications | (2023)14:920

https://doi.org/10.1038/s41467-023-36504-1

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

efficiently coupled to the photosystem I reaction center core. Biochemistry 42, 3893–3903 (2003).

Chen, H.-Y. S., Liberton, M., Pakrasi, H. B. & Niedzwiedzki, D. M.

Reevaluating the mechanism of excitation energy regulation in ironstarved cyanobacteria. Biochim. Biophys. Acta Bioenergy 1858,

249–258 (2017).

Shen, G., Gan, F. & Bryant, D. A. The siderophilic cyanobacterium

Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by

expressing multiple isiA-family genes. Photosynth. Res. 128,

325–340 (2016).

Nagao, R. et al. Molecular organizations and function of iron-stressinduced-A protein family in Anabaena sp. PCC 7120. Biochim. Biophys. Acta Bioenergy 1862, 148327 (2021).

Nagao, R. et al. pH-induced regulation of excitation energy transfer

in the cyanobacterial photosystem I tetramer. J. Phys. Chem. B 124,

1949–1954 (2020).

Chitnis, V. P. & Chitnis, P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 336, 330–334 (1993).

Schluchter, W. M., Shen, G., Zhao, J. & Bryant, D. A. Characterization

of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a

new model for state transitions in cyanobacteria. Photochem. Photobiol. 64, 53–66 (1996).

Li, M., Semchonok, D. A., Boekema, E. J. & Bruce, B. D. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell

26, 1230–1245 (2014).

Zhao, L.-S. et al. Structural variability, coordination and adaptation

of a native photosynthetic machinery. Nat. Plants 6,

869–882 (2020).

Park, Y.-I., Sandström, S., Gustafsson, P. & Öquist, G. Expression of

the isiA gene is essential for the survival of the cyanobacterium

Synechococcus sp. PCC 7942 by protecting photosystem II from

excess light under iron limitation. Mol. Microbiol. 32,

123–129 (1999).

Wang, Q., Hall, C. L., Al-Adami, M. Z. & He, Q. IsiA Is required for the

formation of photosystem I supercomplexes and for efficient state

transition in Synechocystis PCC 6803. PLoS ONE 5, e10432 (2010).

Kato, K. et al. Structural basis for the absence of low-energy

chlorophylls in a photosystem I trimer from Gloeobacter violaceus.

eLife 11, e73990 (2022).

Polívka, T. & Sundström, V. Ultrafast dynamics of carotenoid excited

states−From solution to natural and artificial systems. Chem. Rev.

104, 2021–2072 (2004).

Ruban, A. V., Johnson, M. P. & Duffy, C. D. P. The photoprotective

molecular switch in the photosystem II antenna. Biochim. Biophys.

Acta Bioenergy 1817, 167–181 (2012).

Nagao, R., Yamaguchi, M., Nakamura, S., Ueoka-Nakanishi, H. &

Noguchi, T. Genetically introduced hydrogen bond interactions

reveal an asymmetric charge distribution on the radical cation of

the special-pair chlorophyll P680. J. Biol. Chem. 292,

7474–7486 (2017).

Pinto, F. L., Thapper, A., Sontheim, W. & Lindblad, P. Analysis of

current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol. Biol. 10, 79 (2009).

Ehira, S. & Miyazaki, S. Regulation of genes involved in heterocyst

differentiation in the cyanobacterium Anabaena sp. strain PCC 7120

by a group 2 sigma factor SigC. Life 5, 587–603 (2015).

Ikeuchi, M. & Inoue, Y. A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS

Lett. 241, 99–104 (1988).

Nagao, R. et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. Nat. Plants 5,

890–901 (2019).

12

Article

46. Nagao, R., Yokono, M., Akimoto, S. & Tomo, T. High excitation

energy quenching in fucoxanthin chlorophyll a/c-binding protein

complexes from the diatom Chaetoceros gracilis. J. Phys. Chem.

B 117, 6888–6895 (2013).

47. Hamada, F., Murakami, A. & Akimoto, S. Adaptation of divinyl

chlorophyll a/b-containing cyanobacterium to different light conditions: three strains of Prochlorococcus marinus. J. Phys. Chem.

B 121, 9081–9090 (2017).

48. Nagao, R., Yokono, M., Ueno, Y., Shen, J.-R. & Akimoto, S. Excitationenergy transfer and quenching in diatom PSI-FCPI upon P700

cation formation. J. Phys. Chem. B 124, 1481–1486 (2020).

49. Yonekura, K., Maki-Yonekura, S., Naitow, H., Hamaguchi, T. &

Takaba, K. Machine learning-based real-time object locator/

evaluator for cryo-EM data collection. Commun. Biol. 4,

1044 (2021).

50. Mastronarde, D. N. Automated electron microscope tomography

using robust prediction of specimen movements. J. Struct. Biol. 152,

36–51 (2005).

51. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beaminduced motion for improved cryo-electron microscopy. Nat.

Methods 14, 331–332 (2017).

52. Mindell, J. A. & Grigorieff, N. Accurate determination of local

defocus and specimen tilt in electron microscopy. J. Struct. Biol.

142, 334–347 (2003).

53. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order

aberrations and anisotropic magnification from cryo-EM data sets in

RELION-3.1. IUCrJ 7, 253–267 (2020).

54. Grigorieff, N. & Harrison, S. C. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr.

Opin. Struct. Biol. 21, 265–273 (2011).

55. Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun.

11, 5208 (2020).

56. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J.

E. The Phyre2 web portal for protein modeling, prediction and

analysis. Nat. Protoc. 10, 845–858 (2015).

57. Pettersen, E. F. et al. UCSF Chimera - a visualization system for

exploratory research and analysis. J. Comput. Chem. 25,

1605–1612 (2004).

58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and

development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66,

486–501 (2010).

59. Adams, P. D. et al. PHENIX: a comprehensive Python-based system

for macromolecular structure solution. Acta Crystallogr. D. Biol.

Crystallogr. 66, 213–221 (2010).

60. Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N.

Cryo-EM single-particle structure refinement and map calculation

using Servalcat. Acta Crystallogr. D. Struct. Biol. 77, 1282–1291

(2021).

61. Chen, V. B. et al. MolProbity: all-atom structure validation for

macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

62. Barad, B. A. et al. EMRinger: side chain-directed model and map

validation for 3D cryo-electron microscopy. Nat. Methods 12,

943–946 (2015).

63. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps

with Q-scores. Nat. Methods 17, 328–334 (2020).

64. Schrödinger, L. L. C. The PyMOL Molecular Graphics System. Version 2.5.0. (2021).

Nature Communications | (2023)14:920

https://doi.org/10.1038/s41467-023-36504-1

Acknowledgements

We thank Ms. Kumiyo Kato for her assistance in this study. This work was

supported by JSPS KAKENHI grant Nos. JP20H02914 (Koji.K.),

JP21K19085 (R.N.), JP20K06528 (Keisuke.K), and JP17H06434 and

JP22H04916 (J.-R.S.), JST-Mirai Program Grant Number JPMJMI20G5

(K.Y.), Takeda Science Foundation (Koji.K.), and the Cyclic Innovation for

Clinical Empowerment (CiCLE) from the Japan Agency for Medical

Research and Development, AMED (T.H., Keisuke.K., K.Y.).

Author contributions

R.N. conceived the project; R.N., N.T., and S.S. prepared the PSI-IsiA

supercomplex and analyzed its biochemical characterization; S.E. performed transcription analysis of IsiAs; Y.U., M.F., and S.A. performed TRF

measurements of the PSI-IsiA supercomplex and their data analysis; T.S.

and N.D. identified subunits in the PSI-IsiA supercomplex; T.H. collected

cryo-EM images; Koji.K. processed the cryo-EM data and reconstructed

the final cryo-EM map; Koji.K. built the structural model and refined the

final model; Y.N. analyzed structural data; Keisuke.K. commented on the

structural data; K.Y. and J.-R.S. supervised this project; R.N. and S.A.

wrote the draft manuscript; and R.N., S.A., and J.-R.S. wrote the final

manuscript, and all of the authors joined the discussion of the results.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-36504-1.

Correspondence and requests for materials should be addressed to Ryo

Nagao, Seiji Akimoto, Koji Yonekura or Jian-Ren Shen.

Peer review information Nature Communications thanks Christoph

Gerle, Petar Lambrev and the other, anonymous, reviewer(s) for their

contribution to the peer review of this work. Peer reviewer reports are

available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る